cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A306821 Inverse binomial transform of the "original" Bernoulli numbers [A164555(n)/A027642(n)] with 1 and 1/2 swapped. Denominators.

Original entry on oeis.org

2, 2, 3, 1, 15, 1, 21, 1, 15, 1, 33, 1, 1365, 1, 3, 1, 255, 1, 399, 1, 165, 1, 69, 1, 1365, 1, 3, 1, 435, 1, 7161, 1, 255, 1, 3, 1, 959595, 1, 3, 1, 6765, 1, 903, 1, 345, 1, 141, 1, 23205, 1, 33, 1, 795, 1, 399, 1
Offset: 0

Views

Author

Paul Curtz, Jun 04 2019

Keywords

Comments

Fractions: 1/2, 1/2, -4/3, 2, -38/15, 3, -73/21, 4, -68/15, 5, -179/33, 6, -9218/1365, 7, ... .
Numerators are A307974(n).
a(2n) same as denominators of cosecant numbers A001897 for n>0 (conjectured).

Crossrefs

Essentially the same as A141459.

Programs

  • Mathematica
    b[n_] = BernoulliB[n]; b[0] = 1/2; b[1] = 1;
    a[n_] := Sum[(-1)^(n - k)*Binomial[n, k]*b[k], {k, 0, m}] // Denominator;
    Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Jun 04 2019 *)

Formula

a(n) = A141459(n) * A141044(n).
a(n) = A141459(n) for n>2.
a(2n+1) = A054977(n).
a(2n) = A001897(n) * A054977(n).

A375577 Array read by ascending antidiagonals: A(n,k) = k^n + k*n + 1.

Original entry on oeis.org

2, 1, 2, 1, 3, 2, 1, 4, 5, 2, 1, 5, 9, 7, 2, 1, 6, 15, 16, 9, 2, 1, 7, 25, 37, 25, 11, 2, 1, 8, 43, 94, 77, 36, 13, 2, 1, 9, 77, 259, 273, 141, 49, 15, 2, 1, 10, 143, 748, 1045, 646, 235, 64, 17, 2, 1, 11, 273, 2209, 4121, 3151, 1321, 365, 81, 19, 2
Offset: 0

Views

Author

Stefano Spezia, Aug 19 2024

Keywords

Examples

			Array begins:
  2, 2,  2,   2,    2,     2, ...
  1, 3,  5,   7,    9,    11, ...
  1, 4,  9,  16,   25,    36, ...
  1, 5, 15,  37,   77,   141, ...
  1, 6, 25,  94,  273,   646, ...
  1, 7, 43, 259, 1045,  3151, ...
  1, 8, 77, 748, 4121, 15656, ...
  ...
		

Crossrefs

Cf. A000290, A004247, A004248, A005408 (n=1), A005491 (n=3), A007395 (n=0), A054977 (k=0), A176691 (k=2), A176805 (k=3), A176916 (k=5), A176972 (k=7), A214647.
Cf. A375578 (antidiagonal sums).

Programs

  • Mathematica
    A[0,0]=2; A[n_,k_]:=k^n+k*n+1;Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten

Formula

G.f. for the k-th column: (2*x^2 - 3*x - k^2 + k + 1)/((x - 1)^2*(x - k)).
E.g.f. for the k-th column: exp(x)*(1 + exp((k-1)*x) + k*x).
A(n,1) = n + 2.
A(2,n) = A000290(n+1).
A(n,n) = 2*A214647(n) + 1.

A080209 Gilbreath transform of the sequence of Sophie Germain primes (A005384), i.e., the diagonal of leading successive absolute differences of A005384.

Original entry on oeis.org

2, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 3, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 1, 3
Offset: 1

Views

Author

John W. Layman, Mar 20 2003

Keywords

Comments

Conjecture: The diagonal of leading successive absolute differences of the Sophie Germain primes consists, except for the initial 2, only of 1's and 3s.

Examples

			The difference table begins:
   2;
   3,  1;
   5,  2,  1;
  11,  6,  4,  3;
  23, 12,  6,  2,  1;
  29,  6,  6,  0,  2,  1;
		

Crossrefs

Programs

  • Mathematica
    sgp[1] = Select[Prime[Range[1000]], PrimeQ[2 # + 1]&];
    sgp[n_] := Differences[sgp[n - 1]] // Abs;
    Table[sgp[n], {n, 1, 105}][[All, 1]] (* Jean-François Alcover, Feb 04 2019 *)

A267319 Continued fraction expansion of phi^8, where phi = (1 + sqrt(5))/2.

Original entry on oeis.org

46, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 13 2016

Keywords

Comments

More generally, the ordinary generating function for the continued fraction expansion of phi^(2*k + 1), where phi = (1 + sqrt(5))/2, k = 1, 2, 3,... is floor(phi^(2*k + 1))/(1 - x), and for the continued fraction expansion of phi^(2*k) is (floor(phi^(2*k)) + x - x^2)/(1 - x^2).

Examples

			phi^8 = (47 + 21*sqrt(5))/2 = 46 + 1/(1 + 1/(45 + 1/(1 + 1/(45 + 1/(1 + 1/(45 + 1/...)))))).
		

Crossrefs

Cf. A001622.
Cf. continued fraction expansion of phi^k: A000012 (k = 1), A054977 (k = 2), A010709 (k = 3), A176260 (k = 4, for n>0), A010850 (k = 5), A040071 (k = 6, for n>0), A010868 (k = 7), this sequence (k = 8).

Programs

  • Magma
    [46] cat &cat [[1, 45]^^50]; // Vincenzo Librandi, Jan 13 2016
  • Mathematica
    ContinuedFraction[(47 + 21 Sqrt[5])/2, 82]

Formula

G.f.: (46 + x - x^2)/(1 - x^2).
a(n) = 23 + 22*(-1)^n for n>0. - Bruno Berselli, Jan 18 2016

A273153 a(n) = Numerator of (0 followed by 1's) - n/2^n.

Original entry on oeis.org

0, 1, 1, 5, 3, 27, 29, 121, 31, 503, 507, 2037, 1021, 8179, 8185, 32753, 4095, 131055, 131063, 524269, 262139, 2097131, 2097141, 8388585, 2097149, 33554407, 33554419, 134217701, 67108857, 536870883, 536870897, 2147483617, 134217727, 8589934559, 8589934575, 34359738333
Offset: 0

Views

Author

Paul Curtz, May 16 2016

Keywords

Comments

A060576(n+1) = 0, 1, 1, 1, 1, 1, 1, ... - (0(n) = Oresme(n) = 0, 1/2, 1/2, 3/8, 1/4, 5/32, 3/32, ...). Both sequences are autosequences of the first kind. f(n) = 0, 1/2, 1/2, 5/8, 3/4, 27/32, 29/32, 121/128, ... is an autosequence of the first kind. Without one 1/2, f(n) is an increasing sequence.
The numerators (1 followed by A075101(n)) are the same as in n/2^n.

Examples

			Array of differences of fractions (characteristic aspect of an autosequence of the first kind):
0,     1/2,   1/2,   5/8,   3/4, ...
1/2,     0,   1/8,   1/8,  3/32, ...
-1/2,  1/8,     0, -1/32, -1/32, ...
5/8,  -1/8, -1/32,     0, 1/128, ...
-3/4, 3/32,  1/32, 1/128,     0, ...
...
		

Crossrefs

Programs

  • Mathematica
    {0}~Join~Array[Numerator@ Abs[1 - Binomial[0, # - 1] - #/2^#] &, 30] (* Michael De Vlieger, May 17 2016 *)

A305499 Square array A(n,k), n > 0 and k > 0, read by antidiagonals, with initial values A(1,k) = k and recurrence equations A(n+1,k) = A(n,k) for 0 < k <= n and A(n+1,k) = A(n,k) - A000035(n+k) for 0 < n < k.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 3, 4, 1, 1, 2, 3, 5, 1, 1, 2, 3, 5, 6, 1, 1, 2, 2, 4, 5, 7, 1, 1, 2, 2, 4, 5, 7, 8, 1, 1, 2, 2, 3, 4, 6, 7, 9, 1, 1, 2, 2, 3, 4, 6, 7, 9, 10, 1, 1, 2, 2, 3, 3, 5, 6, 8, 9, 11, 1, 1, 2, 2, 3, 3, 5, 6, 8, 9, 11, 12, 1, 1, 2, 2, 3, 3, 4, 5, 7, 8, 10, 11, 13
Offset: 1

Views

Author

Werner Schulte, Jun 03 2018

Keywords

Examples

			The square array begins:
  n\k |  1  2  3  4  5  6  7  8  9  10  11  12
  ====+=======================================
    1 |  1  2  3  4  5  6  7  8  9  10  11  12
    2 |  1  1  3  3  5  5  7  7  9   9  11  11
    3 |  1  1  2  3  4  5  6  7  8   9  10  11
    4 |  1  1  2  2  4  4  6  6  8   8  10  10
    5 |  1  1  2  2  3  4  5  6  7   8   9  10
    6 |  1  1  2  2  3  3  5  5  7   7   9   9
    7 |  1  1  2  2  3  3  4  5  6   7   8   9
    8 |  1  1  2  2  3  3  4  4  6   6   8   8
    9 |  1  1  2  2  3  3  4  4  5   6   7   8
   10 |  1  1  2  2  3  3  4  4  5   5   7   7
   11 |  1  1  2  2  3  3  4  4  5   5   6   7
etc.
		

Crossrefs

Cf. A000012 (col 1), A054977 (col 2), A000027 (row 1), A109613 (row 2), A028310 (row 3), A008619 (main diagonal and subdiagonals).

Formula

A(n,k) = floor((k+1)/2) for 1 <= k <= n and A(n,k) = floor((k+1)/2) + floor((k+1-n)/2) for 1 <= n < k.
A(n+m,n) = floor((n+1)/2) for n > 0 and some fixed m >= 0.
A(n,n+m) = floor((m+1)/2) + floor((n+1+m)/2) for n>0 and some fixed m >= 0.
A(n+1,k+1) = A(n,k+1) + A(n,k) - A(n-1,k) for k > 0 and n > 1.
A(n,k) = A(n,k-1) + 2*A(n,k-2) - 2*A(n,k-3) - A(n,k-4) + A(n,k-5) for n > 0 and k > 5.
A(n,n) = A008619(n-1) for n > 0.
A(n+1,2*n-1) = A001651(n) for n > 0.
Sum_{i=1..n} A(i,i)*A209229(i) = 2^floor(log_2(n)) for n > 0.
P(n,x) = Sum_{k>0} A(n,k)*x^(k-1) = (1-x^(2*n))/((1-x^n)*(1-x^2)*(1-x)) = (1+x^n)/((1-x^2)*(1-x)) for n > 0.
P(n+1,x) = P(n,x) - x^n/(1-x^2) for n > 0 and P(1,x) = 1/(1-x)^2.
G.f.: Sum_{n>0, k>0} A(n,k)*x^(k-1)*y^(n-1) = (1+x-2*x*y)/((1-x)*(1-x^2) * (1-y)*(1-x*y)).
Conjecture: Sum_{i=1..n} A(n+1-i,i) = A211538(n+3) for n > 0.

A322506 Factorial expansion of 1/exp(2) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

0, 0, 0, 3, 1, 1, 3, 0, 6, 4, 7, 5, 2, 9, 9, 8, 10, 8, 9, 1, 13, 18, 1, 2, 8, 15, 26, 10, 22, 1, 18, 9, 20, 10, 2, 6, 13, 19, 16, 38, 38, 3, 32, 5, 39, 24, 7, 27, 14, 41, 20, 39, 32, 7, 20, 35, 44, 50, 24, 34, 51, 14, 39, 47, 49, 15, 61, 54, 60, 52, 34, 60, 32, 72, 48, 12, 67, 52, 22, 48
Offset: 1

Views

Author

G. C. Greubel, Dec 12 2018

Keywords

Examples

			1/exp(2) = 0 + 0/2! + 0/3! + 3/4! + 1/5! + 1/6! + 3/7! + 0/8! + 6/9! +...
		

Crossrefs

Cf. A092553 (decimal expansion), 0 U A001204 (continued fraction).
Cf. A054977 (e), A067840 (e^2), A068453 (sqrt(e)), A237420 (1/e).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Floor(Exp(-2))] cat [Floor(Factorial(n)*Exp(-2)) - n*Floor(Factorial((n-1))*Exp(-2)) : n in [2..80]];
    
  • Mathematica
    With[{b = 1/E^2}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]]
  • PARI
    default(realprecision, 250); b = exp(-2); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", "))
    
  • Sage
    b=exp(-2);
    def a(n):
        if (n==1): return floor(b)
        else: return expand(floor(factorial(n)*b) -n*floor(factorial(n-1)*b))
    [a(n) for n in (1..80)]

A383134 Array read by ascending antidiagonals: A(n,k) is the length of the arithmetic progression of only primes having difference n and first term prime(k).

Original entry on oeis.org

2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 2, 3, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Stefano Spezia, Apr 17 2025

Keywords

Examples

			The array begins as:
  2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 3, 2, 1, 2, 1, 2, 1, 1, 2, ...
  2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 3, 1, 2, 1, 2, 1, 2, 1, 1, ...
  2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 1, 5, 3, 4, 2, 3, 1, 2, 1, ...
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 3, 2, 1, 2, 1, 1, 1, 2, 2, ...
  2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 3, 1, 2, 1, 2, 1, 2, 1, 1, ...
  ...
A(2,2) = 3 since 3 primes are in arithmetic progression with a difference of 2 and the first term equal to the 2nd prime: 3, 5, and 7.
A(6,3) = 5 since 5 primes are in arithmetic progression with a difference of 6 and the first term equal to the 3rd prime: 5, 11, 17, 23, and 29.
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 139.

Crossrefs

Programs

  • Mathematica
    A[n_,k_]:=Module[{count=1,sum=Prime[k]},While[PrimeQ[sum+=n], count++]; count]; Table[A[n-k+1,k],{n,13},{k,n}]//Flatten

Formula

A(A006512(n),k) = 1 for n > 1.
A(A040976(n),k) = A054977(k+1).
Previous Showing 31-38 of 38 results.