A306821
Inverse binomial transform of the "original" Bernoulli numbers [A164555(n)/A027642(n)] with 1 and 1/2 swapped. Denominators.
Original entry on oeis.org
2, 2, 3, 1, 15, 1, 21, 1, 15, 1, 33, 1, 1365, 1, 3, 1, 255, 1, 399, 1, 165, 1, 69, 1, 1365, 1, 3, 1, 435, 1, 7161, 1, 255, 1, 3, 1, 959595, 1, 3, 1, 6765, 1, 903, 1, 345, 1, 141, 1, 23205, 1, 33, 1, 795, 1, 399, 1
Offset: 0
-
b[n_] = BernoulliB[n]; b[0] = 1/2; b[1] = 1;
a[n_] := Sum[(-1)^(n - k)*Binomial[n, k]*b[k], {k, 0, m}] // Denominator;
Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Jun 04 2019 *)
A375577
Array read by ascending antidiagonals: A(n,k) = k^n + k*n + 1.
Original entry on oeis.org
2, 1, 2, 1, 3, 2, 1, 4, 5, 2, 1, 5, 9, 7, 2, 1, 6, 15, 16, 9, 2, 1, 7, 25, 37, 25, 11, 2, 1, 8, 43, 94, 77, 36, 13, 2, 1, 9, 77, 259, 273, 141, 49, 15, 2, 1, 10, 143, 748, 1045, 646, 235, 64, 17, 2, 1, 11, 273, 2209, 4121, 3151, 1321, 365, 81, 19, 2
Offset: 0
Array begins:
2, 2, 2, 2, 2, 2, ...
1, 3, 5, 7, 9, 11, ...
1, 4, 9, 16, 25, 36, ...
1, 5, 15, 37, 77, 141, ...
1, 6, 25, 94, 273, 646, ...
1, 7, 43, 259, 1045, 3151, ...
1, 8, 77, 748, 4121, 15656, ...
...
Cf.
A000290,
A004247,
A004248,
A005408 (n=1),
A005491 (n=3),
A007395 (n=0),
A054977 (k=0),
A176691 (k=2),
A176805 (k=3),
A176916 (k=5),
A176972 (k=7),
A214647.
-
A[0,0]=2; A[n_,k_]:=k^n+k*n+1;Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten
A080209
Gilbreath transform of the sequence of Sophie Germain primes (A005384), i.e., the diagonal of leading successive absolute differences of A005384.
Original entry on oeis.org
2, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 3, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 1, 3
Offset: 1
The difference table begins:
2;
3, 1;
5, 2, 1;
11, 6, 4, 3;
23, 12, 6, 2, 1;
29, 6, 6, 0, 2, 1;
-
sgp[1] = Select[Prime[Range[1000]], PrimeQ[2 # + 1]&];
sgp[n_] := Differences[sgp[n - 1]] // Abs;
Table[sgp[n], {n, 1, 105}][[All, 1]] (* Jean-François Alcover, Feb 04 2019 *)
A267319
Continued fraction expansion of phi^8, where phi = (1 + sqrt(5))/2.
Original entry on oeis.org
46, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1, 45, 1
Offset: 0
phi^8 = (47 + 21*sqrt(5))/2 = 46 + 1/(1 + 1/(45 + 1/(1 + 1/(45 + 1/(1 + 1/(45 + 1/...)))))).
-
[46] cat &cat [[1, 45]^^50]; // Vincenzo Librandi, Jan 13 2016
-
ContinuedFraction[(47 + 21 Sqrt[5])/2, 82]
A273153
a(n) = Numerator of (0 followed by 1's) - n/2^n.
Original entry on oeis.org
0, 1, 1, 5, 3, 27, 29, 121, 31, 503, 507, 2037, 1021, 8179, 8185, 32753, 4095, 131055, 131063, 524269, 262139, 2097131, 2097141, 8388585, 2097149, 33554407, 33554419, 134217701, 67108857, 536870883, 536870897, 2147483617, 134217727, 8589934559, 8589934575, 34359738333
Offset: 0
Array of differences of fractions (characteristic aspect of an autosequence of the first kind):
0, 1/2, 1/2, 5/8, 3/4, ...
1/2, 0, 1/8, 1/8, 3/32, ...
-1/2, 1/8, 0, -1/32, -1/32, ...
5/8, -1/8, -1/32, 0, 1/128, ...
-3/4, 3/32, 1/32, 1/128, 0, ...
...
-
{0}~Join~Array[Numerator@ Abs[1 - Binomial[0, # - 1] - #/2^#] &, 30] (* Michael De Vlieger, May 17 2016 *)
A305499
Square array A(n,k), n > 0 and k > 0, read by antidiagonals, with initial values A(1,k) = k and recurrence equations A(n+1,k) = A(n,k) for 0 < k <= n and A(n+1,k) = A(n,k) - A000035(n+k) for 0 < n < k.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 1, 1, 3, 4, 1, 1, 2, 3, 5, 1, 1, 2, 3, 5, 6, 1, 1, 2, 2, 4, 5, 7, 1, 1, 2, 2, 4, 5, 7, 8, 1, 1, 2, 2, 3, 4, 6, 7, 9, 1, 1, 2, 2, 3, 4, 6, 7, 9, 10, 1, 1, 2, 2, 3, 3, 5, 6, 8, 9, 11, 1, 1, 2, 2, 3, 3, 5, 6, 8, 9, 11, 12, 1, 1, 2, 2, 3, 3, 4, 5, 7, 8, 10, 11, 13
Offset: 1
The square array begins:
n\k | 1 2 3 4 5 6 7 8 9 10 11 12
====+=======================================
1 | 1 2 3 4 5 6 7 8 9 10 11 12
2 | 1 1 3 3 5 5 7 7 9 9 11 11
3 | 1 1 2 3 4 5 6 7 8 9 10 11
4 | 1 1 2 2 4 4 6 6 8 8 10 10
5 | 1 1 2 2 3 4 5 6 7 8 9 10
6 | 1 1 2 2 3 3 5 5 7 7 9 9
7 | 1 1 2 2 3 3 4 5 6 7 8 9
8 | 1 1 2 2 3 3 4 4 6 6 8 8
9 | 1 1 2 2 3 3 4 4 5 6 7 8
10 | 1 1 2 2 3 3 4 4 5 5 7 7
11 | 1 1 2 2 3 3 4 4 5 5 6 7
etc.
A322506
Factorial expansion of 1/exp(2) = Sum_{n>=1} a(n)/n!.
Original entry on oeis.org
0, 0, 0, 3, 1, 1, 3, 0, 6, 4, 7, 5, 2, 9, 9, 8, 10, 8, 9, 1, 13, 18, 1, 2, 8, 15, 26, 10, 22, 1, 18, 9, 20, 10, 2, 6, 13, 19, 16, 38, 38, 3, 32, 5, 39, 24, 7, 27, 14, 41, 20, 39, 32, 7, 20, 35, 44, 50, 24, 34, 51, 14, 39, 47, 49, 15, 61, 54, 60, 52, 34, 60, 32, 72, 48, 12, 67, 52, 22, 48
Offset: 1
1/exp(2) = 0 + 0/2! + 0/3! + 3/4! + 1/5! + 1/6! + 3/7! + 0/8! + 6/9! +...
-
SetDefaultRealField(RealField(250)); [Floor(Exp(-2))] cat [Floor(Factorial(n)*Exp(-2)) - n*Floor(Factorial((n-1))*Exp(-2)) : n in [2..80]];
-
With[{b = 1/E^2}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]]
-
default(realprecision, 250); b = exp(-2); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", "))
-
b=exp(-2);
def a(n):
if (n==1): return floor(b)
else: return expand(floor(factorial(n)*b) -n*floor(factorial(n-1)*b))
[a(n) for n in (1..80)]
A383134
Array read by ascending antidiagonals: A(n,k) is the length of the arithmetic progression of only primes having difference n and first term prime(k).
Original entry on oeis.org
2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 2, 3, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
The array begins as:
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 2, 1, 2, 1, 2, 1, 1, 2, ...
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 1, 2, 1, 2, 1, 2, 1, 1, ...
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 5, 3, 4, 2, 3, 1, 2, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 2, 1, 2, 1, 1, 1, 2, 2, ...
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 1, 2, 1, 2, 1, 2, 1, 1, ...
...
A(2,2) = 3 since 3 primes are in arithmetic progression with a difference of 2 and the first term equal to the 2nd prime: 3, 5, and 7.
A(6,3) = 5 since 5 primes are in arithmetic progression with a difference of 6 and the first term equal to the 3rd prime: 5, 11, 17, 23, and 29.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 139.
-
A[n_,k_]:=Module[{count=1,sum=Prime[k]},While[PrimeQ[sum+=n], count++]; count]; Table[A[n-k+1,k],{n,13},{k,n}]//Flatten
Comments