cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A169662 Numbers divisible by the sum of their digits, and by the sum of their digits squared, by the sum of their digits cubed and by the sum of 4th powers of their digits.

Original entry on oeis.org

1, 10, 100, 110, 111, 1000, 1010, 1011, 1100, 1101, 1110, 2000, 5000, 10000, 10010, 10011, 10100, 10101, 10110, 11000, 11001, 11010, 11100, 20000, 50000, 55000, 100000, 100010, 100011, 100100, 100101, 100110, 101000, 101001, 101010, 101100
Offset: 1

Views

Author

Michel Lagneau, Apr 05 2010

Keywords

Comments

The numbers such that all digits are nonzero are rare (see the subsequence A176194).

Examples

			1121211 is a term since 1^4 + 1^4 + 2^4 + 1^4 + 2^4 + 1^4 + 1^4 = 37 and 1121211 = 37*30303 ; 1^3 + 1^3 + 2^3 + 1^3 + 2^3 + 1^3 + 1^3 = 21 and 1121211 = 21*53391 ; 1^2 + 1^2 + 2^2 + 1^2 + 2^2 + 1^2 + 1^2 = 13 and 1121211 = 13* 86247 ; 1 + 1 + 2 + 1 + 2 + 1 + 1 = 9 and 1121211 = 9*124579.
		

Crossrefs

Intersection of A005349, A034087, A034088 and A169665.

Programs

  • Maple
    isA169662 := proc(n)
            dgs := convert(n,base,10) ;
            if (n mod ( add(d,d=dgs) ) = 0)  and (n mod (add(d^2,d=dgs) )) =0 and (n mod (add(d^3,d=dgs))) =0 and (n mod (add(d^4,d=dgs))) = 0 then
                    true;
            else
                    false;
            end if;
    end proc:
    for i from 1 to 110000 do
            if isA169662(i) then
                    printf("%d,",i) ;
            end if;
    end do: # R. J. Mathar, Nov 07 2011
  • Mathematica
    q[n_] := And @@ Divisible[n, Plus @@@ Transpose @ Map[#^Range[4] &, IntegerDigits[n]]]; Select[Range[10^5], q] (* Amiram Eldar, Jan 31 2021 *)

Formula

{n : A007953(n)|n and A003132(n)|n and A055012(n)| n and A055013(n)| n}.

A176194 Numbers with no zero digits divisible by the sum of the k-th powers of their digits, for each k = 1,2,3,4.

Original entry on oeis.org

1, 111, 1121211, 11243232, 12132432, 12413232, 22331232, 23111352, 23411232, 24113232, 41223312, 42131232, 44662464, 111111111, 112452144, 114251424, 135964224, 211412544, 246134592, 313212312, 332131212, 382941675, 416283624, 442114512, 523173456, 671635575, 979652772
Offset: 1

Views

Author

Michel Lagneau, Apr 11 2010

Keywords

Comments

For the numbers divisible by the sum of k-th powers of digits including 0, see A169662. The numbers such that the digits are > 0 are rare.

Examples

			For n = 246134592 we obtain :
2^4 + 4^4 + 6^4 + 1^4 + 3^4 + 4^4 + 5^4 + 9^4 + 2^4 = 9108, and 246134592 = 9108*27024 ;
2^3 + 4^3 + 6^3 + 1^3 + 3^3 + 4^3 + 5^3 + 9^3 + 2^3 = 1242, and 246134592 = 1242*198176 ;
2^2 + 4^2 + 6^2 + 1^2 + 3^2 + 4^2 + 5^2 + 9^2 + 2^2 = 192, and 246134592 = 192*1281951 ;
2 + 4 + 6 + 1 + 3 + 4 + 5 + 9 + 2 = 36, and 246134592 = 36*6837072.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 2 to 500000000 do:l:=evalf(floor(ilog10(n))+1):n0:=n:s1:=0:s2:=0:s3:=0:s4:=0:p:=1:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :s1:=s1+u:p:=p*u:s2:=s2+u^2:s3:=s3+u^3:s4:=s4+u^4: od:if irem(n,s1)=0 and irem(n,s2)=0 and irem(n,s3)=0 and irem(n,s4)=0 and p<>0 then print(n):else fi:od:

Formula

A007953 (n)|n and A003132(n)|n and A055012 (n)| n and A055013 (n)| n and all digits < > 0.

Extensions

a(1)-a(2) and more terms add by Amiram Eldar, Apr 20 2023

A226087 Number of values k in base n for which the sum of digits of k = sqrt(k).

Original entry on oeis.org

1, 4, 2, 3, 3, 6, 2, 2, 2, 5, 2, 6, 2, 5, 5, 2, 2, 4, 2, 6, 6, 4, 2, 5, 2, 4, 2, 6, 2, 11, 2, 2, 6, 4, 5, 6, 2, 4, 6, 5, 2, 11, 2, 6, 5, 4, 2, 6, 2, 4, 6, 5, 2, 4, 5, 5, 6, 4, 2, 13, 2, 4, 4, 2, 5, 11, 2, 5, 6, 11, 2, 5, 2, 4, 6, 6, 6, 11, 2, 5, 2, 4, 2, 12, 5
Offset: 2

Views

Author

Keywords

Comments

Values of k in base n have at most 3 digits. Proof: Because sqrt(k) increases faster than the digit sum of k, only numbers with d digits meeting the condition d*(n-1) >= n^(d/2) are candidate fixed points. d < 3 for n > 6, and since there are no fixed points of four or more digits in bases 2 through 5, there are no fixed points in any base with more than 3 digits.
From the above, it can be shown that for three-digit fixed points of the form xyz, x <= 6; also x <= 4 for n > 846. These theoretical upper limits are statistically unlikely, and in fact of the 86356 solutions in bases 2 to 10000, only 6.5% of them begin with 2, and none begin with 3 through 6.

Examples

			For a(16)=5 the solutions are the square numbers {1, 36, 100, 225, 441} because in base 16 they are written as {1, 24, 64, E1, 1B9} and
  sqrt(1) = 1
  sqrt(36) = 6 = 2+4
  sqrt(100) = 10 = 6+4
  sqrt(225) = 15 = 14+1, and
  sqrt(441) = 21 = 1+11+9.
		

Crossrefs

Cf. A226224.
Cf. digital sums for digits at various powers: A007953, A003132, A055012, A055013, A055014, A055015.

Programs

  • R
    sapply(2:16,function(n) sum(sapply((1:(n^ifelse(n>6,1.5,2)))^2, function(x) sum(inbase(x,n))==sqrt(x))))

A226352 Number of integers k in base n whose squared digits sum to sqrt(k).

Original entry on oeis.org

1, 3, 2, 2, 1, 1, 4, 2, 1, 2, 3, 6, 1, 6, 3, 3, 1, 2, 2, 3, 2, 4, 4, 4, 2, 9, 2, 4, 2, 3, 1, 3, 3, 3, 3, 1, 2, 4, 5, 4, 1, 6, 1, 5, 2, 5, 2, 5, 4, 1, 3, 5, 1, 5, 2, 5, 1, 7, 3, 2, 2, 7, 3, 2, 2, 4, 3, 2, 1, 3, 3, 6, 3, 3, 2, 1, 2, 5, 3, 4, 1, 4, 1, 3, 2, 3, 1
Offset: 2

Views

Author

Keywords

Comments

Any d-digit number in base n meeting the criterion must also meet the condition d*(n-1)^2 < n^(d/2). Numerically, it can be shown this limits the candidate values to squares < 22*n^4. The larger values are statistically unlikely, and in fact the largest value of k in the first 1000 bases is ~9.96*n^4 in base 775.

Examples

			In base 8, the four solutions are the values {1,16,256,2601}, which are written as {1,20,400,5051} in base 8 and
sqrt(1)    =  1 = 1^2;
sqrt(16)   =  4 = 2^2 + 0^2;
sqrt(256)  = 16 = 4^2 + 0^2 + 0^2;
sqrt(2601) = 51 = 5^2 + 0^2 + 5^2 + 1^2,
		

Crossrefs

Cf. A226353.
Cf. digital sums for digits at various powers: A007953, A003132, A055012, A055013, A055014, A055015.

Programs

  • R
    inbase=function(n, b) { x=c(); while(n>=b) { x=c(n%%b, x); n=floor(n/b) }; c(n, x) }
    for(n in 2:50) cat("Base", n, ":", which(sapply((1:(4.7*n^2))^2, function(x) sum(inbase(x, n)^2)==sqrt(x)))^2, "\n")

A226353 Largest integer k in base n whose squared digits sum to sqrt(k).

Original entry on oeis.org

1, 49, 169, 36, 1, 1, 2601, 1089, 1, 8836, 33489, 44100, 1, 149769, 128164, 96721, 1, 156816, 1225, 40804, 12321, 831744, 839056, 1149184, 1737124, 3655744, 407044, 1890625, 2208196, 1089, 1, 1466521, 6125625, 2235025, 2832489, 1, 3759721, 6885376, 8844676
Offset: 2

Views

Author

Keywords

Comments

Any d-digit number in base n meeting the criterion must also meet the condition d*(n-1)^2 < n^(d/2). Numerically, it can be shown this limits the candidate values to squares < 22*n^4. The larger values are statistically unlikely, and in fact the largest value of k in the first 1000 bases is ~9.96*n^4 in base 775.
a(n)=1 iff A226352(n)=1.

Examples

			In base 8, the four solutions are the values {1,16,256,2601}, which are written as {1,20,400,5051} in base 8 and
sqrt(1)   = 1  = 1^2
sqrt(16)  = 4  = 2^2+0^2
sqrt(256) = 16 = 4^2+0^2+0^2
sqrt(2601)= 51 = 5^2+0^2+5^2+1^2
		

Crossrefs

Cf. digital sums for digits at various powers: A007953, A003132, A055012, A055013, A055014, A055015.

Programs

  • R
    inbase=function(n,b) { x=c(); while(n>=b) { x=c(n%%b,x); n=floor(n/b) }; c(n,x) }
    for(n in 2:50) cat("Base",n,":",which(sapply((1:(4.7*n^2))^2,function(x) sum(inbase(x,n)^2)==sqrt(x)))^2,"\n")

A055207 Sum of n-th powers of digits of n.

Original entry on oeis.org

1, 1, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489, 1, 2, 4097, 1594324, 268435457, 30517578126, 2821109907457, 232630513987208, 18014398509481985, 1350851717672992090, 1048576, 2097153, 8388608, 94151567435, 281474993487872, 298023223910507557
Offset: 0

Views

Author

Henry Bottomley, Jun 19 2000

Keywords

Examples

			a(12) = 1^12 + 2^12 = 1 + 4096 = 4097.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(i^n, i=convert(n, base, 10)):
    seq(a(n), n=0..29);  # Alois P. Heinz, Dec 18 2022
  • Mathematica
    Join[{1},Table[Total[IntegerDigits[n]^n],{n,25}]] (* Harvey P. Dale, Jul 16 2011 *)

A217532 Numbers k such that sum of 4th power of digits of k equals the sum of prime divisors of k.

Original entry on oeis.org

210, 1210, 2100, 12100, 21000, 21021, 36522, 63141, 89195, 92029, 112132, 116010, 118461, 121000, 149851, 203013, 203202, 210000, 214456, 303142, 304341, 313230, 323723, 331401, 351760, 416213, 441532, 524371, 534656, 574915, 610171, 654560, 897648, 999643
Offset: 1

Views

Author

Michel Lagneau, Oct 05 2012

Keywords

Comments

Numbers k such that A055013(k) = A008472(k).

Examples

			210 = 2*3*5*7 is in the sequence because 2^4 + 1^4 + 0^4 = 2 + 3 + 5 + 7 = 17.
		

Crossrefs

Programs

  • Mathematica
    Rest[Select[Range[1000000], Total[Transpose[FactorInteger[#]][[1]]]==Total[IntegerDigits[#]^4]&]]

A260598 Numbers n such that the sum of the divisors of n equals the fourth power of the sum of the digits of n.

Original entry on oeis.org

1, 510, 11235, 12243, 14223, 136374, 142494, 145266, 148614, 163158, 171465, 181815, 214863, 240963, 246507, 323976, 397182, 404994, 1548798
Offset: 1

Views

Author

Michael Savoric, Aug 05 2015

Keywords

Comments

Let n be a k-digit number. Then, sigma(n) >= 10^(k-1) and (9*k)^4 >= sum_of_digits(n)^4. So, n must be less than 10^9. - Hiroaki Yamanouchi, Aug 29 2015

Examples

			510 is in the sequence, since (1 + 2 + 3 + 5 + ... + 255 + 510) = (5 + 1 + 0)^4.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..3*10^6] | DivisorSigma(1,n) eq (&+Intseq(n)^4)]; // Vincenzo Librandi, Aug 29 2015
  • Mathematica
    n = 10000000;
    list = {};
    x = 1;
    While[x <= n,
      If[Total[Divisors[x]] == Total[IntegerDigits[x]]^4,
       AppendTo[list, x]];
      x = x + 1
      ];
    list
  • PARI
    isok(n) = sigma(n) == sumdigits(n)^4; \\ Michel Marcus, Aug 06 2015
    

Formula

A000583(A007953(a(n))) = A000203(a(n)).

A360422 Numbers k such that k^2 + (sum of fourth powers of the digits of k^2) is a square.

Original entry on oeis.org

0, 89, 137, 6985
Offset: 1

Views

Author

Robert Israel and Will Gosnell, Feb 06 2023

Keywords

Comments

Since A055013(k) < 9^4*(1+log_10(k)) and k^2 + 9^4*(1+log_10(k^2)) < (k+1)^2 for k > 32918, one need only search up to k = 32918.

Examples

			a(3) = 137 is a term because 137^2 = 18769 and 18769 + 1^4 + 8^4 + 7^4 + 6^4 + 9^4 = 182^2.
		

Crossrefs

Programs

  • Maple
    select(n -> issqr(n^2 + add(t^4, t = convert(n^2,base,10))), [$0..32918]);
  • Python
    from math import isqrt
    def sq(n): return isqrt(n)**2 == n
    def ok(n): return sq(n**2 + sum(int(d)**4 for d in str(n**2)))
    print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Feb 12 2023

A055208 Table read by ascending antidiagonals: T(n,k) (n >= 1, k >= 1) is the sum of k-th powers of digits of n.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 9, 8, 1, 5, 16, 27, 16, 1, 6, 25, 64, 81, 32, 1, 7, 36, 125, 256, 243, 64, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 1, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1, 2, 1, 729, 4096, 16807, 46656, 78125
Offset: 1

Views

Author

Henry Bottomley, Jun 19 2000

Keywords

Examples

			T(34,2) = 3^2 + 4^2 = 25.
From _Georg Fischer_, Mar 01 2022: (Start)
Array T(n, k) (n >= 1, k >= 1) begins:
  1,   1,   1,   1, ...
  2,   4,   8,  16, ...
  3,   9,  27,  64, ...
  4,  16,  64, 256, ...
  ...
(End)
		

Crossrefs

Extensions

Definition clarified by Georg Fischer, Mar 01 2022
Previous Showing 11-20 of 24 results. Next