A180141
Eight rooks and one berserker on a 3 X 3 chessboard. G.f.: (1 + x - 2*x^2)/(1 - 3*x - 6*x^2).
Original entry on oeis.org
1, 4, 16, 72, 312, 1368, 5976, 26136, 114264, 499608, 2184408, 9550872, 41759064, 182582424, 798301656, 3490399512, 15261008472, 66725422488, 291742318296, 1275579489816, 5577192379224, 24385054076568, 106618316505048
Offset: 0
Cf. Berserker sequences corner squares [numerical value A[5]]: 4*
A055099 [0, with leading 1 added],
A180143 [16], 4*
A001353 [17, n>=1 and a(0)=1],
A123620 [3], 2*
A018916 [19, with leading 1 added],
A000302 [15], 4*
A179606 [111, with leading 1 added],
A089979 [343], 4*
A001076 [95, n>=1 and a(0)=1],
A180145 [191],
A180141 [495, this sequence], 4*
A090017 [383, n>=1 and a(0)=1].
-
with(LinearAlgebra): nmax:=22; m:=1; A[5]:= [1,1,1,1,0,1,1,1,1]: A:= Matrix([[0,1,1,1,0,0,1,0,0], [1,0,1,0,1,0,0,1,0], [1,1,0,0,0,1,0,0,1], [1,0,0,0,1,1,1,0,0], A[5], [0,0,1,1,1,0,0,0,1], [1,0,0,1,0,0,0,1,1], [0,1,0,0,1,0,1,0,1], [0,0,1,0,0,1,1,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
-
LinearRecurrence[{3, 6}, {1, 4, 16}, 23] (* Jean-François Alcover, Jan 18 2025 *)
A054458
Convolution triangle based on A001333(n), n >= 1.
Original entry on oeis.org
1, 3, 1, 7, 6, 1, 17, 23, 9, 1, 41, 76, 48, 12, 1, 99, 233, 204, 82, 15, 1, 239, 682, 765, 428, 125, 18, 1, 577, 1935, 2649, 1907, 775, 177, 21, 1, 1393, 5368, 8680, 7656, 4010, 1272, 238, 24, 1, 3363, 14641, 27312, 28548, 18358, 7506, 1946, 308, 27, 1
Offset: 0
Fourth row polynomial (n=3): p(3,x)= 17+23*x+9*x^2+x^3.
Triangle begins :
1
3, 1
7, 6, 1
17, 23, 9, 1
41, 76, 48, 12, 1
99, 233, 204, 82, 15, 1
239, 682, 765, 428, 125, 18, 1. - _Philippe Deléham_, Mar 25 2012
(0, 3, -2/3, -1/3, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins :
1
0, 1
0, 3, 1
0, 7, 6, 1
0, 17, 23, 9, 1
0, 41, 76, 48, 12, 1
0, 99, 233, 204, 82, 15, 1
0, 239, 682, 765, 428, 125, 15, 1. - _Philippe Deléham_, Mar 25 2012
A181245
T(n,k) = Number of n X k binary matrices with no 2 X 2 circuit having pattern 0101 in any orientation.
Original entry on oeis.org
2, 4, 4, 8, 14, 8, 16, 50, 50, 16, 32, 178, 322, 178, 32, 64, 634, 2066, 2066, 634, 64, 128, 2258, 13262, 23858, 13262, 2258, 128, 256, 8042, 85126, 275690, 275690, 85126, 8042, 256, 512, 28642, 546410, 3185462, 5735478, 3185462, 546410, 28642, 512, 1024
Offset: 1
All solutions for 2X2
..0..0....0..0....0..0....0..0....0..1....0..1....0..1....1..0....1..0....1..0
..0..0....0..1....1..0....1..1....0..0....0..1....1..1....0..0....1..0....1..1
...
..1..1....1..1....1..1....1..1
..0..0....0..1....1..0....1..1
A212835
T(n,k)=Number of 0..k arrays of length n+1 with 0 never adjacent to k.
Original entry on oeis.org
2, 7, 2, 14, 17, 2, 23, 50, 41, 2, 34, 107, 178, 99, 2, 47, 194, 497, 634, 239, 2, 62, 317, 1106, 2309, 2258, 577, 2, 79, 482, 2137, 6306, 10727, 8042, 1393, 2, 98, 695, 3746, 14407, 35954, 49835, 28642, 3363, 2, 119, 962, 6113, 29114, 97127, 204994, 231521
Offset: 1
Some solutions for n=5 k=4
..1....4....1....1....1....3....2....1....1....4....3....1....0....2....2....3
..1....3....0....4....2....4....1....1....2....2....3....4....1....3....3....1
..1....3....3....1....3....3....2....2....2....4....3....3....1....1....0....3
..1....3....0....4....2....3....3....3....4....2....2....0....4....4....2....1
..1....4....0....3....2....2....3....3....4....4....0....1....4....3....4....2
..1....2....0....4....3....1....0....2....4....2....3....2....1....4....3....4
A184761
T(n,k)=Half the number of nXk binary arrays with no 1 having an adjacent 1 both above and to its left.
Original entry on oeis.org
1, 2, 2, 4, 7, 4, 8, 25, 25, 8, 16, 89, 163, 89, 16, 32, 317, 1056, 1056, 317, 32, 64, 1129, 6847, 12397, 6847, 1129, 64, 128, 4021, 44391, 145778, 145778, 44391, 4021, 128, 256, 14321, 287802, 1713803, 3110914, 1713803, 287802, 14321, 256, 512, 51005, 1865917
Offset: 1
Some solutions for 4X3
..1..1..0....1..0..0....0..1..1....0..0..0....0..0..1....1..0..0....0..0..0
..0..0..0....0..0..1....0..0..1....0..0..1....1..0..0....0..1..0....1..0..1
..1..1..0....1..0..1....1..1..0....0..0..1....1..1..0....0..0..1....1..0..1
..0..0..0....0..0..0....0..0..1....1..1..0....0..1..0....1..0..0....0..1..0
A287839
Number of words of length n over the alphabet {0,1,...,10} such that no two consecutive terms have distance 9.
Original entry on oeis.org
1, 11, 117, 1247, 13289, 141619, 1509213, 16083463, 171399121, 1826575451, 19465548357, 207441511727, 2210673955769, 23558830139779, 251063019088173, 2675542001860183, 28512861152219041, 303857405535211691, 3238164083417650197, 34508642672922983807
Offset: 0
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
A287825-
A287839.
-
a:=proc(n) option remember; if n=0 then 1 elif n=1 then 11 elif n=2 then 117 else 10*a(n-1)+7*a(n-2); fi; end: seq(a(n), n=0..30); # Wesley Ivan Hurt, Nov 25 2017
-
LinearRecurrence[{10, 7}, {1, 11, 117}, 20]
-
Vec((1 + x) / (1 - 10*x - 7*x^2) + O(x^30)) \\ Colin Barker, Nov 25 2017
-
def a(n):
if n in [0,1,2]:
return [1, 11, 117][n]
return 10*a(n-1) + 7*a(n-2)
A254600
Numbers of words on alphabet {0,1,...,10} with no subwords ii, for i from {0,1}.
Original entry on oeis.org
1, 11, 119, 1289, 13961, 151211, 1637759, 17738489, 192124721, 2080893611, 22538058599, 244108628489, 2643928812281, 28636265779211, 310158017102639, 3359306563039289, 36384487784316641, 394078636910520011, 4268246759164049879, 46229175323835178889
Offset: 0
-
[n le 1 select 11^n else 10*Self(n)+9*Self(n-1): n in [0..20]]; // Bruno Berselli, Feb 03 2015
-
RecurrenceTable[{a[0]==1, a[1]==11, a[n]== 10a[n-1] +9a[n-2]}, a[n], {n, 0, 25}]
Table[(-3 I)^(n-1)*(ChebyshevU[n-1, 5*I/3] - 3*I*ChebyshevU[n, 5*I/3]), {n,0,25}] (* G. C. Greubel, Feb 13 2021 *)
-
Vec((x+1) / (1-10*x-9*x^2) + O(x^30)) \\ Colin Barker, Jan 21 2017
-
[(-3*i)^(n-1)*( chebyshev_U(n-1, 5*i/3) -3*i*chebyshev_U(n, 5*i/3) ) for n in (0..30)] # G. C. Greubel, Feb 13 2021
A287831
Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 8.
Original entry on oeis.org
1, 10, 96, 924, 8892, 85572, 823500, 7924932, 76265388, 733938084, 7063035084, 67970944260, 654116708844, 6294876045156, 60578584659468, 582976518206148, 5610260171812140, 53990200655546148, 519573366930788172, 5000101506310370436, 48118353758378062956
Offset: 0
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
A287825-
A287831.
-
LinearRecurrence[{9, 6}, {1, 10}, 30]
-
def a(n):
if n in [0, 1]:
return [1, 10][n]
return 9*a(n-1)+6*a(n-2)
A254657
Numbers of words on alphabet {0,1,...,8} with no subwords ii, where i is from {0,1,2}.
Original entry on oeis.org
1, 9, 78, 678, 5892, 51204, 444984, 3867096, 33606672, 292055952, 2538087648, 22057036896, 191684821056, 1665820789824, 14476675244928, 125808326698368, 1093326665056512, 9501463280642304, 82571666235477504, 717582109567673856, 6236086873954255872
Offset: 0
-
[n le 1 select 9^n else 8*Self(n)+6*Self(n-1): n in [0..20]];
-
RecurrenceTable[{a[0] == 1, a[1] == 9, a[n] == 8 a[n - 1] + 6 a[n - 2]}, a[n], {n, 0, 20}]
-
Vec((1+x)/(1-8*x-6*x^2) + O(x^30)) \\ Colin Barker, Nov 16 2016
A255256
Number A(n,k) of 2-colorings of a k X n rectangle such that no nontrivial subsquare has monochromatic corners; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 14, 8, 1, 1, 16, 50, 50, 16, 1, 1, 32, 178, 276, 178, 32, 1, 1, 64, 634, 1498, 1498, 634, 64, 1, 1, 128, 2258, 8352, 10980, 8352, 2258, 128, 1, 1, 256, 8042, 46730, 85138, 85138, 46730, 8042, 256, 1, 1, 512, 28642, 260204, 655090, 781712, 655090, 260204, 28642, 512, 1
Offset: 0
A(2,2) = 2^(2*2) - 2 = 14 because there are exactly two of sixteen 2-colorings of the 2 X 2 square resulting in nontrivial subsquares with monochromatic corners.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 4, 8, 16, 32, 64, ...
1, 4, 14, 50, 178, 634, 2258, ...
1, 8, 50, 276, 1498, 8352, 46730, ...
1, 16, 178, 1498, 10980, 85138, 655090, ...
1, 32, 634, 8352, 85138, 781712, 6965108, ...
1, 64, 2258, 46730, 655090, 6965108, 58339148, ...
Previous
Showing 11-20 of 62 results.
Next
Comments