A088389
Number of real regular n X n (0,1) matrices modulo rows permutations.
Original entry on oeis.org
1, 1, 3, 29, 940, 104286, 40050850, 53640013886, 251995529844792
Offset: 0
Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 08 2003
a(8) from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 24 2008
A116506
Number of singular n X n rational {0,1}-matrices with no zero rows.
Original entry on oeis.org
0, 3, 169, 28065, 16114831, 33686890209, 262530190180063, 7717643584470877185
Offset: 1
A089475
Number of different values taken by the permanent of a real nonsingular (0,1)-matrix of order n.
Original entry on oeis.org
1, 1, 3, 9, 31, 149
Offset: 1
a(4) = 9 because the permanents of non-singular 4 X 4 (0,1)-matrices can take the values 1,2,..,7,9,11.
A116507
Number of singular n X n rational {0,1}-matrices with no zero rows or columns.
Original entry on oeis.org
0, 1, 91, 18943, 12483601, 28530385447, 235529139302185, 7183142489571818623
Offset: 1
A098148
Number of real (0,1) n X n matrices such that some eigenvalues are strictly complex.
Original entry on oeis.org
0, 0, 52, 22196, 21005094
Offset: 1
The 3 X 3 matrix ((0,1,0),(0,0,1),(1,1,1)) has real eigenvalue 1.83929 and the complex pair -0.41964+-0.60629*i. There are 12 (0,1) 3 X 3 matrices with these eigenvalues. There are 6 groups of 6 matrices having eigenvalues (1.3472,-0.66236+-0.56228*i), (1.46557,-0.23279+-0.79255*i),..., (2.32472,0.33764+-0.56228*i). Two matrices (e.g. ((0,0,1),(1,0,0),(0,1,0)) ) have eigenvalues (1,-0.5+-0.5*sqrt(3)*i). Two matrices (e.g. ((1,1,0),(0,1,1),(1,0,1)) ) have eigenvalues (2,0.5+-0.5*sqrt(3)*i). Total: 12+6*6+2+2=52=a(3).
Cf. other counts for (0, 1) matrices:
A003024 (positive eigenvalues),
A055165 (nonsingular),
A085656 (positive definite),
A086510 (nonnegative eigenvalues).
-
a[n_] := Module[{M, iter, cnt=0}, M = Table[a[i, j], {i, 1, n}, {j, 1, n}]; iter = Thread[{Flatten[M], 0, 1}]; Do[If[AnyTrue[Eigenvalues[M], Im[#] != 0&], cnt++], Evaluate[Sequence @@ iter]]; cnt];
Do[Print[n, " ", a[n]], {n, 1, 4}] (* Jean-François Alcover, Dec 09 2018 *)
A116976
Number of nonsingular n X n matrices with rational entries equal to 0 or 1, up to row and column permutations.
Original entry on oeis.org
1, 2, 8, 61, 1153, 64310, 11352457, 6417769762
Offset: 1
From _M. F. Hasler_, May 25 2020: (Start)
Representatives of the two inequivalent nonsingular (0,1) matrices for n=2 are
[ 1 0 ] and [ 1 1 ] .
[ 0 1 ] [ 0 1 ]
For n=3 we have 8 nonsingular nonequivalent representatives:
[1 0 0] [1 0 0] [1 0 1] [1 1 1] [1 1 0] [1 1 0] [1 1 1] [1 1 0]
[0 1 0], [0 1 1], [0 1 1], [0 1 0], [0 1 1], [1 0 1], [0 1 1], [1 0 1].
[0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 1 1] [0 0 1] [1 1 1]
To see that they are inequivalent, consider their column sums:
(1 1 1), (1 1 2), (1 1 3), (1 2 2), (1 2 2), (2 2 2), (1 2 3), (3 2 2).
Only the 4th and 5th matrix have equivalent column sum signature (1,2,2), but their row sums are (3,1,1) resp. (2,2,1). Therefore they can't be obtained one from the other by row and column permutations which leave invariant these sums.
(End)
A197487
Number of nonsingular n X n matrices with elements from {0,1,2}.
Original entry on oeis.org
1, 2, 50, 12792, 30844560, 671869521960, 129553882116606720
Offset: 0
-
(* 2x2 case *) cnt = 0; Do[d = Det[{{a, b}, {c, d}}]; If[d != 0, cnt++], {a, 0, 2}, {b, 0, 2}, {c, 0, 2}, {d, 0, 2}]; cnt (* T. D. Noe, Nov 29 2011 *)
A087488
Number of n X n (-1,1)-matrices with all eigenvalues >= 0.
Original entry on oeis.org
1, 1, 6, 64, 4744, 536736
Offset: 0
Frederique Oggier (frederique.oggier(AT)epfl.ch) and N. J. A. Sloane, Oct 24 2003
For n = 2 the six matrices are (+ means +1, - means -1):
++ +- -- -+ +- ++
-- +- ++ -+ -+ ++
with eigenvalues
00 00 00 00 20 20 respectively.
- B. D. McKay, F. E. Oggier, G. F. Royle, N. J. A. Sloane, I. M. Wanless and H. S. Wilf, Acyclic digraphs and eigenvalues of (0,1)-matrices, arXiv:math/0310423 [math.CO], 2003.
- B. D. McKay, F. E. Oggier, G. F. Royle, N. J. A. Sloane, I. M. Wanless and H. S. Wilf, Acyclic digraphs and eigenvalues of (0,1)-matrices, J. Integer Sequences, 7 (2004), #04.3.3.
- Index entries for sequences related to binary matrices
-
a[n_] := Select[Partition[#, n] & /@ Tuples[{-1, 1}, {n^2}], AllTrue[ Eigenvalues[#], NonNegative]&] // Length; a[0] = 1;
Do[Print[n, " ", a[n]], {n, 0, 5}] (* Jean-François Alcover, Feb 13 2019 *)
A127706
Number of nonsingular n X n real {0,1}-matrices n X n which are not robust (cf. A125587) nor in A127186.
Original entry on oeis.org
0, 0, 66, 13616, 9215792
Offset: 1
Comments