cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A088389 Number of real regular n X n (0,1) matrices modulo rows permutations.

Original entry on oeis.org

1, 1, 3, 29, 940, 104286, 40050850, 53640013886, 251995529844792
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 08 2003

Keywords

Crossrefs

Formula

a(n) = A055165(n) / n!.

Extensions

a(8) from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 24 2008
a(0)=1 prepended by Alois P. Heinz, Jun 18 2022

A116506 Number of singular n X n rational {0,1}-matrices with no zero rows.

Original entry on oeis.org

0, 3, 169, 28065, 16114831, 33686890209, 262530190180063, 7717643584470877185
Offset: 1

Views

Author

Vladeta Jovovic, Apr 03 2006

Keywords

Crossrefs

Formula

a(n) = A055601(n) - A055165(n).

A089475 Number of different values taken by the permanent of a real nonsingular (0,1)-matrix of order n.

Original entry on oeis.org

1, 1, 3, 9, 31, 149
Offset: 1

Views

Author

Hugo Pfoertner, Nov 11 2003

Keywords

Comments

This sequence was first provided by Jaap Spies.

Examples

			a(4) = 9 because the permanents of non-singular 4 X 4 (0,1)-matrices can take the values 1,2,..,7,9,11.
		

Crossrefs

Extensions

a(6) from Jaap Spies, Nov 12 2003

A116507 Number of singular n X n rational {0,1}-matrices with no zero rows or columns.

Original entry on oeis.org

0, 1, 91, 18943, 12483601, 28530385447, 235529139302185, 7183142489571818623
Offset: 1

Views

Author

Vladeta Jovovic, Apr 03 2006

Keywords

Crossrefs

Formula

a(n) = A048291(n) - A055165(n).

A098148 Number of real (0,1) n X n matrices such that some eigenvalues are strictly complex.

Original entry on oeis.org

0, 0, 52, 22196, 21005094
Offset: 1

Views

Author

Hugo Pfoertner, Sep 07 2004

Keywords

Examples

			The 3 X 3 matrix ((0,1,0),(0,0,1),(1,1,1)) has real eigenvalue 1.83929 and the complex pair -0.41964+-0.60629*i. There are 12 (0,1) 3 X 3 matrices with these eigenvalues. There are 6 groups of 6 matrices having eigenvalues (1.3472,-0.66236+-0.56228*i), (1.46557,-0.23279+-0.79255*i),..., (2.32472,0.33764+-0.56228*i). Two matrices (e.g. ((0,0,1),(1,0,0),(0,1,0)) ) have eigenvalues (1,-0.5+-0.5*sqrt(3)*i). Two matrices (e.g. ((1,1,0),(0,1,1),(1,0,1)) ) have eigenvalues (2,0.5+-0.5*sqrt(3)*i). Total: 12+6*6+2+2=52=a(3).
		

Crossrefs

Cf. other counts for (0, 1) matrices: A003024 (positive eigenvalues), A055165 (nonsingular), A085656 (positive definite), A086510 (nonnegative eigenvalues).

Programs

  • Mathematica
    a[n_] := Module[{M, iter, cnt=0}, M = Table[a[i, j], {i, 1, n}, {j, 1, n}]; iter = Thread[{Flatten[M], 0, 1}]; Do[If[AnyTrue[Eigenvalues[M], Im[#] != 0&], cnt++], Evaluate[Sequence @@ iter]]; cnt];
    Do[Print[n, " ", a[n]], {n, 1, 4}] (* Jean-François Alcover, Dec 09 2018 *)

Extensions

a(5) corrected by Hugo Pfoertner, Sep 26 2017

A116976 Number of nonsingular n X n matrices with rational entries equal to 0 or 1, up to row and column permutations.

Original entry on oeis.org

1, 2, 8, 61, 1153, 64310, 11352457, 6417769762
Offset: 1

Views

Author

Vladeta Jovovic, Apr 01 2006

Keywords

Comments

"Rational entries" means that a matrix is nonsingular iff it has a nonzero determinant. (Over the integers a matrix with determinant > 1 is not invertible.) M. F. Hasler, May 25 2020

Examples

			From _M. F. Hasler_, May 25 2020: (Start)
Representatives of the two inequivalent nonsingular (0,1) matrices for n=2 are
  [ 1  0 ]   and   [ 1  1 ]  .
  [ 0  1 ]         [ 0  1 ]
For n=3 we have 8 nonsingular nonequivalent representatives:
  [1 0 0]  [1 0 0]  [1 0 1]  [1 1 1]  [1 1 0]  [1 1 0]  [1 1 1]  [1 1 0]
  [0 1 0], [0 1 1], [0 1 1], [0 1 0], [0 1 1], [1 0 1], [0 1 1], [1 0 1].
  [0 0 1]  [0 0 1]  [0 0 1]  [0 0 1]  [0 0 1]  [0 1 1]  [0 0 1]  [1 1 1]
To see that they are inequivalent, consider their column sums:
  (1 1 1), (1 1 2), (1 1 3), (1 2 2), (1 2 2), (2 2 2), (1 2 3), (3 2 2).
Only the 4th and 5th matrix have equivalent column sum signature (1,2,2), but their row sums are (3,1,1) resp. (2,2,1). Therefore they can't be obtained one from the other by row and column permutations which leave invariant these sums.
(End)
		

Crossrefs

Formula

a(n) = A002724(n) - A116977(n). - Max Alekseyev, Jul 14 2022

Extensions

a(8) from Brendan McKay, May 25 2020

A197487 Number of nonsingular n X n matrices with elements from {0,1,2}.

Original entry on oeis.org

1, 2, 50, 12792, 30844560, 671869521960, 129553882116606720
Offset: 0

Views

Author

Roger Hui, Nov 29 2011

Keywords

Crossrefs

Programs

  • Mathematica
    (* 2x2 case *) cnt = 0; Do[d = Det[{{a, b}, {c, d}}]; If[d != 0, cnt++], {a, 0, 2}, {b, 0, 2}, {c, 0, 2}, {d, 0, 2}]; cnt (* T. D. Noe, Nov 29 2011 *)

Extensions

a(5)-a(6) from Minfeng Wang, May 29 2024
a(0)=1 prepended by Alois P. Heinz, May 29 2024

A087488 Number of n X n (-1,1)-matrices with all eigenvalues >= 0.

Original entry on oeis.org

1, 1, 6, 64, 4744, 536736
Offset: 0

Views

Author

Frederique Oggier (frederique.oggier(AT)epfl.ch) and N. J. A. Sloane, Oct 24 2003

Keywords

Examples

			For n = 2 the six matrices are (+ means +1, - means -1):
++ +- -- -+ +- ++
-- +- ++ -+ -+ ++
with eigenvalues
00 00 00 00 20 20 respectively.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Select[Partition[#, n] & /@ Tuples[{-1, 1}, {n^2}], AllTrue[ Eigenvalues[#], NonNegative]&] // Length; a[0] = 1;
    Do[Print[n, " ", a[n]], {n, 0, 5}] (* Jean-François Alcover, Feb 13 2019 *)

Extensions

a(5) from Jean-François Alcover, Feb 13 2019

A127706 Number of nonsingular n X n real {0,1}-matrices n X n which are not robust (cf. A125587) nor in A127186.

Original entry on oeis.org

0, 0, 66, 13616, 9215792
Offset: 1

Views

Author

Artur Jasinski, Jan 24 2007

Keywords

Crossrefs

Formula

a(n) = A055165(n) - A125587(n) - A127186(n), for n > 1.

Extensions

Name and a(4) corrected by Giovanni Resta, Jul 23 2025
Previous Showing 11-19 of 19 results.