cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A062205 Number of alignments of n strings of length 4.

Original entry on oeis.org

1, 1, 321, 699121, 5552351121, 117029959485121, 5402040231378569121, 480086443888959812703121, 74896283763383392805211587121, 19133358944433370977791260580721121, 7581761490297442738124283591348762605121, 4461925444770180839552702516305804230194739121
Offset: 0

Views

Author

Angelo Dalli, Jun 13 2001

Keywords

Comments

Conjectures: a(n) == 1 (mod 80); for fixed k, the sequence a(n) (mod k) eventually becomes periodic. - Peter Bala, Dec 19 2019

Crossrefs

See A062204 for references, formulas and comments.
Row n=4 of A262809.

Programs

  • Mathematica
    With[{r = 4}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 15}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)

Formula

From Vaclav Kotesovec, Mar 22 2016: (Start)
a(n) ~ 2^(5*n-3) * n!^4 / (Pi^(3/2) * n^(3/2) * 3^n * (log(2))^(4*n+1)).
a(n) ~ sqrt(Pi) * 2^(5*n-1) * n^(4*n+1/2) / (3^n * exp(4*n) * (log(2))^(4*n+1)).
(End)
It appears that a(n) = (1/(2*6^n))*Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k) *A055203(n+k) for n >= 1. - Peter Bala, Dec 19 2019

Extensions

Revised by Max Alekseyev, Mar 13 2009

A122725 a(n) = A000670(n)^2.

Original entry on oeis.org

1, 1, 9, 169, 5625, 292681, 21930489, 2236627849, 297935847225, 50229268482121, 10454564139438969, 2632936466960600329, 789136169944454084025, 277579719258755165321161, 113238180214596650771616249, 53030348046942317338336489609, 28256184698070300360908567636025
Offset: 0

Views

Author

Vladeta Jovovic, Sep 23 2006

Keywords

Comments

This is also the number of possible positions of n intervals on a line having a common non-punctual intersection. Proof: Let us denoted each interval Ai (1 <= i <= n) by the string AiAi. Then the set of all such relative positions is given by the S-language [A1 ⊗ A2 ... ⊗ An]^2. The cardinality of $A1 ⊗ A2 ... ⊗ An$ is given by A000670. - Sylviane R. Schwer (schwer(AT)lipn.univ-paris13.fr), Nov 26 2007

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember;
         `if`(n=0, 1, add(b(n-1, j)*j, j=k..k+1))
        end:
    a:= n-> b(n, 0)^2:
    seq(a(n), n=0..16);  # Alois P. Heinz, Aug 12 2025
  • Mathematica
    Table[(PolyLog[ -z, 1/2]/2)^2, {z, 1, 16}] (* Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Oct 10 2006 *)
  • PARI
    {a(n)=sum(k=0, n, stirling(n, k, 2)*k!)^2} \\ Paul D. Hanna, Nov 07 2009

Formula

a(n) = Sum_{m>=0} Sum_{k>=0} ((k*m)^n/2^(k+m+2)).
G.f.: Sum_{n>=0} (1/(2-exp(n*x))/2^(n+1)).
Sum_{n>=0} a(n)*log(1+x)^n/n! = o.g.f. of A101370. - Paul D. Hanna, Nov 07 2009
a(n) ~ (n!)^2 / (4 * (log(2))^(2*n+2)). - Vaclav Kotesovec, May 03 2015

Extensions

More terms from Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Oct 10 2006

A384351 Expansion of Product_{k>=1} 1/(1 - k*(k+1)/2 * x)^((1/2)^(k+2)).

Original entry on oeis.org

1, 1, 7, 143, 6140, 455828, 51947988, 8414718996, 1836791273514, 519582028795210, 184852108308617398, 80776494267416227078, 42529172631705836804876, 26553065315757661351020284, 19397441882229095276127402500, 16390942374821715002096327774628
Offset: 0

Views

Author

Seiichi Manyama, May 27 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Sum[Sum[Sum[(-1)^j*Binomial[i, j]*((i - j)*(i - j - 1)/2)^k, {j, 0, i}], {i, 0, 2 k}]*x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 29 2025 *)
  • PARI
    a262809(n, k) = sum(i=0, k*n, sum(j=0, i, (-1)^j*binomial(i, j)*binomial(i-j, n)^k));
    my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, a262809(2, k)*x^k/k)))

Formula

G.f.: exp(Sum_{k>=1} A055203(k) * x^k/k).
a(n) ~ sqrt(Pi) * 2^(n - 1/2) * n^(2*n - 1/2) / (exp(2*n) * log(2)^(2*n+1)). - Vaclav Kotesovec, May 29 2025
Previous Showing 11-13 of 13 results.