cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A249017 Records in A055460 (number of primes dividing the squarefree part of n!).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 70, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 91, 93, 95, 98, 99, 100
Offset: 1

Views

Author

Max Alekseyev, Oct 19 2014

Keywords

Crossrefs

Cf. A055460, A055204, A249016 (indices of records).

Programs

  • PARI
    np=vector(10^6); b=-1; r=0; for(n=1,10^6, f=factor(n); for(i=1,matsize(f)[1], if(f[i,2]%2, r += (-1)^np[f[i,1]]; np[f[i,1]]=1-np[f[i,1]]; )); if(r>b,b=r;print1(b,", ")) )

A249831 A(n,n) = 1, A(n,k) = A(n,k+1)*k / gcd(A(n,k+1),k)^2 if n>k, A(n,k) = A(n,k-1)*k / gcd(A(n,k-1),k)^2 if n=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 6, 1, 2, 6, 3, 2, 6, 30, 12, 1, 6, 6, 5, 60, 4, 3, 6, 30, 35, 10, 20, 1, 12, 30, 5, 280, 70, 30, 5, 4, 60, 5, 35, 2520, 140, 210, 30, 1, 20, 10, 35, 70, 252, 1260, 420, 210, 6, 5, 30, 70, 70, 70, 2772, 126, 420, 420, 42, 1, 30, 210, 35, 70, 7
Offset: 1

Views

Author

Alois P. Heinz, Nov 06 2014

Keywords

Examples

			Square array A(n,k) begins:
:   1,  2,  6,   6,  30,  5,  35, 280, 2520,  252, ...
:   1,  1,  3,  12,  60, 10,  70, 140, 1260,  126, ...
:   2,  2,  1,   4,  20, 30, 210, 420,  420,   42, ...
:   6,  6,  3,   1,   5, 30, 210, 420,  420,   42, ...
:   6,  6, 12,   4,   1,  6,  42,  84,   84,  210, ...
:  30, 30, 60,  20,   5,  1,   7,  56,  504, 1260, ...
:   5,  5, 10,  30,  30,  6,   1,   8,   72,  180, ...
:  35, 35, 70, 210, 210, 42,   7,   1,    9,   90, ...
:  70, 70, 35, 105, 420, 84,  56,   8,    1,   10, ...
:  70, 70, 35, 105, 420, 84, 504,  72,    9,    1, ...
		

Crossrefs

Column k=1 gives A055204(n-1) for n>1.
Row n=1 gives A008339(k+1).
Main diagonal gives: A000012.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(k=n, 1,
          (r-> r*k/igcd(r, k)^2)(A(n, k+`if`(n>k, 1, -1))))
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
  • Mathematica
    A[n_, k_] := A[n, k] = If[k == n, 1, Function[{r}, r*k/GCD[r, k]^2][A[n, k+If[n>k, 1, -1]]]]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Dec 02 2014, translated from Maple *)

A056194 Characteristic cube divisor of n!: a(n) = A056191(n!).

Original entry on oeis.org

1, 1, 1, 8, 8, 1, 1, 8, 8, 1, 1, 27, 27, 216, 1000, 1000, 1000, 125, 125, 1, 9261, 74088, 74088, 343, 343, 2744, 74088, 216, 216, 125, 125, 1000, 35937000, 4492125, 12326391, 12326391, 12326391, 98611128, 8024024008, 125375375125
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e] && e > 1, p^3, 1]; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 40] (* Amiram Eldar, Sep 06 2020 *)

Formula

a(n) = A056191(A000142(n)). - Amiram Eldar, Sep 06 2020

A078389 Number of different values obtained by evaluating all different parenthesizations of 1/2/3/4/.../n.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 60, 116, 192, 384, 544, 1088, 1736, 2576, 3824, 7648, 10352, 20704, 28096, 40256, 62128, 124256, 155488, 227872, 349248, 470352, 622128, 1244256, 1499232, 2998464, 3796224, 5289920, 8048544, 10668096, 12562752, 25125504
Offset: 1

Views

Author

John W. Layman, May 07 2003

Keywords

Comments

a(n) = 2*a(n-1) if n is an odd prime, because (p/q)/n and p/(q/n)=(p/q)*n give exactly two different values for each of the different values p/q from the parenthesizations of 1/.../n-1 and a(n) <= 2*a(n-1) if n is not a prime. - Alois P. Heinz, Nov 23 2008
Let M(n) be the smallest integer among the a(n) values. It seems that, for n >= 4, M(n) = A055204, the squarefree part of n!. - Giovanni Resta, Dec 16 2012

Examples

			For n=4, ((1/2)/3)/4 = 1/24, (1/2)/(3/4) = 2/3, (1/(2/3))/4 = 3/8, 1/((2/3)/4) = 6 and 1/(2/(3/4)) = 3/8, giving 4 different values 1/24, 3/8, 2/3 and 6. Thus a(4) = 4.
a(5) = 2*a(4) = 2*4 = 8, because 5 is a prime; the 8 different values are: 1/120, 3/40, 2/15, 5/24, 6/5, 15/8, 10/3, 30. - _Alois P. Heinz_, Nov 23 2008
		

Programs

  • Maple
    p:= proc(n) option remember; local x;
          if n<1 then {}
        elif n=1 then {1}
        elif n=2 then {1/2}
        else {seq([x/n, x*n][], x=p(n-1))}
          fi
        end:
    a:= n-> nops(p(n)):
    seq(a(n), n=1..20);  # Alois P. Heinz, Nov 23 2008
  • Mathematica
    p[0] = {}; p[1] = {1}; p[2] = {1/2}; p[n_] := p[n] = Union[ Flatten[ Table[ {x/n, x*n}, {x, p[n - 1]}]]]; a[n_] := Length[p[n]]; A078389 = Table[an = a[n]; Print[an]; an, {n, 1, 30}] (* Jean-François Alcover, Jan 06 2012, after Alois P. Heinz *)

Extensions

Corrected a(5)-a(10) and extended a(11)-a(31) by Alois P. Heinz, Nov 23 2008
a(32)-a(37) from Alois P. Heinz, Mar 07 2011

A147661 a(n) = squarefree part of n^n.

Original entry on oeis.org

1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 1, 15, 1, 17, 1, 19, 1, 21, 1, 23, 1, 1, 1, 3, 1, 29, 1, 31, 1, 33, 1, 35, 1, 37, 1, 39, 1, 41, 1, 43, 1, 5, 1, 47, 1, 1, 1, 51, 1, 53, 1, 55, 1, 57, 1, 59, 1, 61, 1, 7, 1, 65, 1, 67, 1, 69, 1, 71, 1, 73, 1, 3, 1, 77, 1, 79, 1, 1, 1, 83, 1, 85, 1, 87, 1, 89
Offset: 1

Views

Author

Artur Jasinski, Nov 09 2008

Keywords

Crossrefs

Programs

Formula

a(n) = A007913(A000312(n)). - Michel Marcus, Nov 01 2022

A072118 a(n) = (2*n)!/core(n!)^2/(n+1) where core(x) is the squarefree part of x.

Original entry on oeis.org

1, 2, 5, 224, 672, 2737152, 8895744, 474439680, 130660687872, 4513732853760000, 15798064988160000, 894413525483520000, 3194334019584000000, 27610545531676262400000, 8107146431738442547200000, 7569213421444268241715200000, 27753782545295650219622400000
Offset: 1

Views

Author

Benoit Cloitre, Jun 19 2002

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Mod[e, 2]; a[1] = 1; a[n_] := (2*n)! / ((Times @@ f @@@ FactorInteger[n!])^2 * (n+1)); Array[a, 17] (* Amiram Eldar, May 01 2025 *)
  • PARI
    a(n) = (2*n)!/core(n!)^2/(n+1);

A240505 Products of primes the squares of which are Fermi-Dirac divisors of n!

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 6, 2, 5, 5, 10, 10, 70, 210, 210, 210, 35, 35, 14, 14, 154, 154, 462, 2310, 30030, 10010, 715, 715, 4290, 4290, 4290, 4290, 36465, 7293, 4862, 4862, 92378, 277134, 277134, 277134, 1939938, 1939938, 88179, 146965, 6760390, 6760390, 20281170
Offset: 1

Views

Author

Vladimir Shevelev, Apr 06 2014

Keywords

Comments

Or equivalently, products of primes the squares of which are infinitary divisors of n!.

Crossrefs

Programs

  • PARI
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k,2]); bde = binary(valuation(d, f[k,1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)););); return (1);}
    a(n) = {f = factor(n!); for (k=1, #f~, if ((f[k,2] > 1) && isidiv(f[k,1]^2, f), f[k,2]=1, f[k,2]=0);); factorback(f);} \\ Michel Marcus, Feb 15 2016

Extensions

a(23)-a(32) from Michel Marcus, Feb 15 2016
a(1) = 1 and more terms from Rémy Sigrist, Feb 13 2019

A248779 Rectangular array, by antidiagonals: T(m,n) = greatest (m+1)-th-power-free divisor of n!.

Original entry on oeis.org

1, 2, 1, 6, 2, 1, 6, 6, 2, 1, 30, 3, 6, 2, 1, 5, 15, 24, 6, 2, 1, 35, 90, 120, 24, 6, 2, 1, 70, 630, 45, 120, 24, 6, 2, 1, 70, 630, 315, 720, 120, 24, 6, 2, 1, 7, 210, 2520, 5040, 720, 120, 24, 6, 2, 1, 77, 2100, 280, 1260, 5040, 720, 120, 24, 6, 2, 1, 231
Offset: 1

Views

Author

Clark Kimberling, Oct 14 2014

Keywords

Comments

Row 1: A055204, greatest squarefree divisor of n!
Row 2: A145642, greatest cubefree divisor of n!
Row 3: A248766, greatest 4th-power-free divisor of n!
Rows 4 to 7: A248769, A248772, A248775, A248778.
(The divisors are here called "greatest" rather than "largest" because the name refers to ">", called "greater than".)

Examples

			Northwest corner:
1   2   6   6   30   5    35    70
1   2   6   3   15   90   630   630
1   2   6   24  120  45   315   2520
1   2   6   24  120  720  5040  1260
		

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}]
    t = Table[n!/p[m, n], {m, 2, 16}, {n, 1, 16}]; TableForm[t]  (* A248779 array *)
    f = Table[t[[n - k + 1, k]], {n, 12}, {k, n, 1, -1}] // Flatten (* A248779 seq. *)

A299700 Squarefree part of 1!*2!*3!*...*n!: The product of factorials one through n divided by its largest square divisor.

Original entry on oeis.org

1, 2, 3, 2, 15, 3, 105, 6, 105, 15, 1155, 5, 15015, 70, 1001, 70, 17017, 35, 323323, 7, 138567, 154, 3187041, 231, 3187041, 6006, 1062347, 858, 30808063, 715, 955049953, 1430, 260468169, 12155, 9116385915, 12155, 337306278855, 461890, 8648878945, 46189, 354604036745, 1939938, 15247973580035, 176358
Offset: 1

Views

Author

Graeme McRae, Feb 17 2018

Keywords

Comments

Smallest number such that a(n)*1!*2!*3!*...*n! is a square.
If n is even, a(2n) = A055204(n).
If n is odd and evil (A129771) then a(2n) = A055204(n)/2.
If n is odd and odious (A092246) then a(2n) = 2*A055204(n).

Examples

			1!*2!*3!*4!*5! = 2^8 * 3^3 * 5^1 so a(5) = 3*5 = 15.
		

Crossrefs

Programs

  • Mathematica
    Nest[Append[#, {#, Sqrt[#] /. (c_: 1) a_^(b_: 0) :> (c a^b)^2} &[#[[-1, 1]]*Length[# + 1]!]] &, {{1, 1}}, 44][[All, -1]] (* Michael De Vlieger, Feb 17 2018, after Bill Gosper at A007913 *)
    f[n_] := Block[{m = BarnesG[n +2], p = 2}, While[p < n, While[ Mod[m, p^2] == 0, m/=p^2]; p = NextPrime@ p]; m]; Array[f, 42] (* Robert G. Wilson v, Feb 18 2018 *)
  • PARI
    a(n) = core(prod(k=1, n, k!)); \\ Michel Marcus, Feb 17 2018

Formula

a(n) = A007913(A000178(n)). - Michel Marcus, Feb 17 2018
Previous Showing 11-19 of 19 results.