A367320
Carmichael numbers k such that (k-1)/lambda(k) > (m-1)/lambda(m) for all Carmichael numbers m < k, where lambda is the Carmichael lambda function (A002322).
Original entry on oeis.org
561, 1105, 1729, 29341, 41041, 63973, 172081, 825265, 852841, 1773289, 5310721, 9890881, 12945745, 18162001, 31146661, 93869665, 133205761, 266003101, 417241045, 496050841, 509033161, 1836304561, 1932608161, 2414829781, 4579461601, 9799928965, 11624584621, 12452890681
Offset: 1
-
seq[kmax_] := Module[{s = {}, r, rm = 0, lam}, Do[If[CompositeQ[k], lam = CarmichaelLambda[k]; If[Mod[k, lam] == 1, r = (k - 1)/lam; If[r > rm, rm = r; AppendTo[s, k]]]], {k, 9, kmax, 2}]; s]; seq[10^6]
-
lista(kmax) = {my(r, rm = 0, lam); forcomposite(k = 4, kmax, if(k % 2, lam = lcm(znstar(k)[2]); if(k % lam == 1, r = (k-1)/lam; if(r > rm, rm = r; print1(k, ", ")))));}
A258839
Carmichael numbers whose prime factors all have the form p=1+x^2+y^2 for some x,y in Z.
Original entry on oeis.org
561, 162401, 410041, 488881, 656601, 2433601, 36765901, 109393201, 171454321, 176659201, 178837201, 189941761, 221884001, 288120421, 600892993, 618068881, 721244161, 931694401, 985052881, 1183104001, 1828377001, 1848112761, 1943951041, 2361232477, 2438403661
Offset: 1
Cf.
A002997 (Carmichael numbers),
A079545 (primes of the form x^2 + y^2 + 1).
-
has(n)=for(x=sqrtint(n\2),sqrtint(n-1), if(issquare(n-x^2-1), return(1)));0
Korselt(n,f=factor(n))=for(i=1,#f~,if(f[i, 2]>1||(n-1)%(f[i, 1]-1),return(0))); 1
is(n)=my(f); if(n%2==0||isprime(n)||!Korselt(n,f=factor(n))||n<9, return(0)); for(i=1,#f~,if(!has(f[i,1]), return(0))); 1 \\ Charles R Greathouse IV, Jun 12 2015
A267462
Carmichael numbers that are not of the form x^2 + y^2 + z^2 where x, y and z are integers.
Original entry on oeis.org
8911, 1152271, 10267951, 14913991, 64377991, 67902031, 139952671, 178482151, 612816751, 652969351, 743404663, 2000436751, 2560600351, 3102234751, 3215031751, 5615659951, 5883081751, 7773873751, 8863329511, 9462932431, 10501586767, 11335174831, 12191597551, 13946829751, 16157879263, 21046047751
Offset: 1
Carmichael number 561 is not a term of this sequence because 561 = 2^2 + 14^2 + 19^2.
Carmichael number 8911 is a term because there is no integer values of x, y and z for the equation 8911 = x^2 + y^2 + z^2.
Carmichael number 10585 is not a term because 10585 = 0^2 + 37^2 + 96^2.
-
filter:= proc(n)
local q;
if isprime(n) then return false fi;
if 2 &^ (n-1) mod n <> 1 then return false fi;
for q in ifactors(n)[2] do
if q[2] > 1 or (n-1) mod (q[1]-1) <> 0 then return false fi
od;
true
end proc:
select(filter, [seq(8*k+7, k=0..10^7)]); # Robert Israel, Jan 18 2016
-
Select[8*Range[1,8000000]+7, CompositeQ[#] && Divisible[#-1, CarmichaelLambda[#]] &] (* Amiram Eldar, Jun 26 2019 *)
-
isA004215(n) = { my(fouri, j) ; fouri=1 ; while( n >=7*fouri, if( n % fouri ==0, j= n/fouri -7 ; if( j % 8 ==0, return(1) ) ; ) ; fouri *= 4 ; ) ; return(0) ; } { for(n=1, 400, if(isA004215(n), print1(n, ", ") ; ) ; ) ; }
isA002997(n) = { my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1 }
for(n=0, 1e10, if(isA002997(n) && isA004215(n), print1(n, ", ")));
-
isA002997(n) = { my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1 }
for(n=0, 1e10, if(isA002997(k=8*n+7), print1(k, ", ")));
A277366
Composite numbers k such that phi(k)*lambda(k) divides (k-1)^2, where phi(k) = A000010(k) and lambda(k) = A002322(k).
Original entry on oeis.org
1729, 670033, 6840001, 83099521, 193708801, 321197185, 367804801, 484662529, 1752710401, 2320690177, 5064928705, 12820178449, 32220147601, 257124585601, 270177600001, 301036080385, 7043394657601, 13237329899521, 14276860416001, 85661522006401, 119377939968001
Offset: 1
-
Select[Range[10^8], CompositeQ[#] && Divisible[(# - 1)^2, EulerPhi[#] * CarmichaelLambda[#]] &] (* Amiram Eldar, Feb 02 2019 *)
-
lista(nn) = forcomposite(n=4, nn, if (((n-1)^2 % (eulerphi(n)*lcm(znstar(n)[2]))) == 0, print1(n, ", "));); \\ Michel Marcus, Oct 11 2016
-
is(n,f=factor(n))=(n-1)^2%(eulerphi(f)*lcm(znstar(f)[2])) == 0 && !isprime(n) && n>1 \\ Charles R Greathouse IV, Oct 11 2016
A277720
Numbers k > 2 such that lambda(k)^2 divides k-1, where lambda(k) = A002322(k).
Original entry on oeis.org
2320690177, 17069520863233, 42182344790209, 65465530560001, 3432376805760001, 13322002122777601, 20388795375960001, 129009714848870401, 580007888606160001, 1096591987029196801, 3029756968906340401, 5806765663003468801, 6213994663149504001, 6367205158826803201, 7802569551798000001, 10319507991273499201
Offset: 1
A290281
Numbers k such that (k-1) mod phi(k) = lambda(k), where phi = A000010 and lambda = A002322.
Original entry on oeis.org
6601, 11972017, 34657141, 67902031, 139952671, 258634741, 2000436751, 8801128801, 9116583841, 9462932431, 38069223721, 326170416001, 359316634951, 1860929324101, 2022188518351, 2283475947391, 2648686458601, 2697891108151, 4513362899761, 5020030521001, 5472940991761, 6163867710001, 7507903975951, 19288340548471
Offset: 1
-
# Using data files for A002997
count:= 0:
for cfile in ["carmichael-16","carmichael17","carmichael18"] do
do
S:= readline(cfile);
if S = 0 then break fi;
L:= map(parse, StringTools:-Split(S));
n:= L[1]; pm:= map(`-`,L[2..-1],1);
phin:= convert(pm,`*`);
lambdan:= ilcm(op(pm));
if n-1 - lambdan mod phin = 0 then
count:= count+1; A[count]:= n;
fi
od:
fclose(cfile);
od:
seq(A[i],i=1..count); # Robert Israel, Jul 26 2017
-
Select[Range[10^8], Divisible[# - 1, (lam = CarmichaelLambda[#])] && Mod[# - 1, EulerPhi[#]] == lam &] (* Amiram Eldar, Dec 06 2019 *)
A290497
Carmichael numbers with a record number of aliquot divisors that are also Carmichael numbers.
Original entry on oeis.org
561, 63973, 31146661, 509033161, 84127131361, 11985185775745, 712484043821641, 24349841028259201, 53545320695780641, 141125066711098561, 16223841675726285601, 562477984940049379201
Offset: 1
509033161 is in the sequence since it is a Carmichael number, and 5 of its divisors are also Carmichael numbers (1729, 63973, 126217, 188461 and 294409), more than for any smaller Carmichael number.
-
A002997 = Cases[Range[1, 100000, 2], n_ /; Mod[n, CarmichaelLambda[n]] == 1 && ! PrimeQ[n]]; carmichaelQ[n_] := Not[PrimeQ[n]] && Divisible[n - 1, CarmichaelLambda[n]]; numSol[n_] := Module[{m = 0}, ds = Divisors[n]; Do[d = ds[[k]]; If[! carmichaelQ[d], Continue[]]; m++, {k, 2, Length[ds] - 1}]; m]; numSolmax = -1; seq = {}; Do[n = A002997[[j]]; m = numSol[n]; If[m > numSolmax, AppendTo[seq, n]; numSolmax = m], {j, 1, Length[A002997]}];seq
A291616
Carmichael numbers k such that 2^d == 2^(k/d) (mod k) for all d|k.
Original entry on oeis.org
1105, 294409, 852841, 3828001, 17098369, 118901521, 150846961, 172947529, 186393481, 200753281, 686059921, 771043201, 1001152801, 1207252621, 1269295201, 1299963601, 1632785701, 1772267281, 2301745249, 4215885697, 4562359201, 4765950001, 4897161361
Offset: 1
Carmichael number 294409 = 37*73*109 is a term because 2^37 == 2^(73*109) (mod 294409), 2^73 == 2^(37*109) (mod 294409), 2^109 == 2^(37*73) (mod 294409).
A300949
Carmichael numbers whose prime factors form an arithmetic progression.
Original entry on oeis.org
1729, 2465, 29341, 294409, 1152271, 1857241, 6189121, 19384289, 56052361, 64377991, 118901521, 172947529, 216821881, 228842209, 625482001, 775368901, 1213619761, 1299963601, 2301745249, 4562359201, 8346731851, 9293756581, 9624742921, 9701285761, 11346205609, 13079177569, 13946829751, 14386156093
Offset: 1
29341 = 13*37*61 is a Carmichael number, and [13, 37, 61] is an arithmetic progression of length 3 and with common difference of 37 - 13 = 61 - 37 = 24. We have 37 = (13 + 61)/2.
-
# using Richard Pinch data file carmichael-16
cfile:= "carmichael-16":
Res:= NULL:
do
S:= readline(cfile);
if S = 0 then break fi;
L:= map(parse, StringTools:-Split(S));
R:= sort(L[2..-1]);
d:= (R[-1]-R[1])/(nops(R)-1);
if R = [seq(i,i=R[1]..R[-1],d)] then
Res:= Res, L[1];
fi
od:
fclose(cfile):
Res;
-
Select[Cases[Range[1, 10^7, 2], ?(And[Mod[#, CarmichaelLambda@ #] == 1, ! PrimeQ[#]] &)], Length@ Union@ Differences@ FactorInteger[#][[All, 1]] == 1 &] (* _Michael De Vlieger, Mar 17 2018, after Artur Jasinski at A002997 *)
A303791
Carmichael numbers (A002997) that are central polygonal numbers (A002061).
Original entry on oeis.org
5310721, 2278677961, 9593125081, 29859667201, 467593730289953281, 98538479002618905601, 146842414757227736821
Offset: 1
Comments