cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 107 results. Next

A367916 Number of sets of nonempty subsets of {1..n} with the same number of edges as covered vertices.

Original entry on oeis.org

1, 2, 6, 45, 1376, 161587, 64552473, 85987037645, 386933032425826, 6005080379837219319, 328011924848834642962619, 64153024576968812343635391868, 45547297603829979923254392040011994, 118654043008142499115765307533395739785599
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2023

Keywords

Examples

			The a(0) = 1 through a(2) = 6 set-systems:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1},{2}}
             {{1},{1,2}}
             {{2},{1,2}}
		

Crossrefs

The covering case is A054780.
For graphs we have A367862, covering A367863, unlabeled A006649.
These set-systems have ranks A367917.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts set-systems covering {1..n}, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A136556 counts set-systems on {1..n} with n edges.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Rest[Subsets[Range[n]]]], Length[Union@@#]==Length[#]&]],{n,0,3}]
  • PARI
    \\ Here b(n) is A054780(n).
    b(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * binomial(2^k-1, n))
    a(n) = sum(k=0, n, binomial(n,k) * b(k)) \\ Andrew Howroyd, Dec 29 2023

Formula

Binomial transform of A054780.

A368598 Number of non-isomorphic n-element sets of singletons or pairs of elements of {1..n}, or unlabeled loop-graphs with n edges and up to n vertices.

Original entry on oeis.org

1, 1, 2, 6, 17, 52, 173, 585, 2064, 7520, 28265, 109501, 437394, 1799843, 7629463, 33302834, 149633151, 691702799, 3287804961, 16058229900, 80533510224, 414384339438, 2185878202630, 11811050484851, 65318772618624, 369428031895444, 2135166786135671, 12601624505404858
Offset: 0

Views

Author

Gus Wiseman, Jan 05 2024

Keywords

Comments

It doesn't matter for this sequence whether we use loops such as {x,x} or half-loops such as {x}.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(4) = 17 set-systems:
  {}  {{1}}  {{1},{2}}    {{1},{2},{3}}        {{1},{2},{3},{4}}
             {{1},{1,2}}  {{1},{2},{1,2}}      {{1},{2},{3},{1,2}}
                          {{1},{2},{1,3}}      {{1},{2},{3},{1,4}}
                          {{1},{1,2},{1,3}}    {{1},{2},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}    {{1},{2},{1,2},{3,4}}
                          {{1,2},{1,3},{2,3}}  {{1},{2},{1,3},{1,4}}
                                               {{1},{2},{1,3},{2,3}}
                                               {{1},{2},{1,3},{2,4}}
                                               {{1},{3},{1,2},{2,4}}
                                               {{1},{1,2},{1,3},{1,4}}
                                               {{1},{1,2},{1,3},{2,3}}
                                               {{1},{1,2},{1,3},{2,4}}
                                               {{1},{1,2},{2,3},{3,4}}
                                               {{2},{1,2},{1,3},{1,4}}
                                               {{4},{1,2},{1,3},{2,3}}
                                               {{1,2},{1,3},{1,4},{2,3}}
                                               {{1,2},{1,3},{2,4},{3,4}}
		

Crossrefs

For any number of edges of any size we have A000612, covering A055621.
For any number of edges we have A000666, A054921, A322700.
The labeled version is A014068.
Counting by weight gives A320663, or A339888 with loops {x,x}.
The covering case is A368599.
For edges of any size we have A368731, covering A368186.
Row sums of A368836.
A000085 counts set partitions into singletons or pairs.
A001515 counts length-n set partitions into singletons or pairs.
A100861 counts set partitions into singletons or pairs by number of pairs.
A111924 counts set partitions into singletons or pairs by length.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Subsets[Subsets[Range[n],{1,2}],{n}]]],{n,0,5}]
  • PARI
    a(n) = polcoef(G(n, O(x*x^n)), n) \\ G defined in A070166. - Andrew Howroyd, Jan 09 2024

Formula

a(n) = A070166(n, n). - Andrew Howroyd, Jan 09 2024

Extensions

Terms a(7) and beyond from Andrew Howroyd, Jan 09 2024

A317795 Number of non-isomorphic set-systems spanning n vertices with no singletons.

Original entry on oeis.org

1, 0, 1, 6, 172, 611852, 200253853704512, 263735716028826427334553305221120, 5609038300883759793482640992086670066496449147691597380832361377955840
Offset: 0

Views

Author

Gus Wiseman, Aug 07 2018

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 6 set-systems:
  {123}
  {12}{13}
  {12}{123}
  {12}{13}{23}
  {12}{13}{123}
  {12}{13}{23}{123}
		

Crossrefs

Programs

  • Mathematica
    sysnorm[{}]:={};sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Table[Length[Union[sysnorm/@Select[Subsets[Select[Subsets[Range[n]],Length[#]>1&]],Union@@#==Range[n]&]]],{n,4}]

Extensions

More terms from Gus Wiseman, Dec 13 2018

A330061 MM-number of the VDD-normalization of the multiset of multisets with MM-number n.

Original entry on oeis.org

1, 2, 3, 4, 3, 6, 7, 8, 9, 6, 3, 12, 13, 14, 15, 16, 3, 18, 19, 12, 21, 6, 7, 24, 9, 26, 27, 28, 13, 30, 3, 32, 15, 6, 35, 36, 37, 38, 39, 24, 3, 42, 13, 12, 45, 14, 13, 48, 49, 18, 15, 52, 53, 54, 15, 56, 57, 26, 3, 60, 37, 6, 63, 64, 39, 30, 3, 12, 35, 70
Offset: 1

Views

Author

Gus Wiseman, Dec 03 2019

Keywords

Comments

We define the VDD (vertex-degrees decreasing) normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, then selecting only the representatives whose vertex-degrees are weakly decreasing, and finally taking the least of these representatives, where the ordering of multisets is first by length and then lexicographically.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}

Crossrefs

This sequence is idempotent and its image/fixed points are A330060.
Non-isomorphic multiset partitions are A007716.
MM-weight is A302242.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sysnorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];
    sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Table[Map[Times@@Prime/@#&,sysnorm[primeMS/@primeMS[n]],{0,1}],{n,100}]

A330229 Number of fully chiral set-systems covering n vertices.

Original entry on oeis.org

1, 1, 2, 42, 21336
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the vertices gives a different representative.

Examples

			The a(3) = 42 set-systems:
  {1}{2}{13}    {1}{2}{12}{13}    {1}{2}{12}{13}{123}
  {1}{2}{23}    {1}{2}{12}{23}    {1}{2}{12}{23}{123}
  {1}{3}{12}    {1}{3}{12}{13}    {1}{3}{12}{13}{123}
  {1}{3}{23}    {1}{3}{13}{23}    {1}{3}{13}{23}{123}
  {2}{3}{12}    {2}{3}{12}{23}    {2}{3}{12}{23}{123}
  {2}{3}{13}    {2}{3}{13}{23}    {2}{3}{13}{23}{123}
  {1}{12}{23}   {1}{2}{13}{123}
  {1}{13}{23}   {1}{2}{23}{123}
  {2}{12}{13}   {1}{3}{12}{123}
  {2}{13}{23}   {1}{3}{23}{123}
  {3}{12}{13}   {2}{3}{12}{123}
  {3}{12}{23}   {2}{3}{13}{123}
  {1}{12}{123}  {1}{12}{23}{123}
  {1}{13}{123}  {1}{13}{23}{123}
  {2}{12}{123}  {2}{12}{13}{123}
  {2}{23}{123}  {2}{13}{23}{123}
  {3}{13}{123}  {3}{12}{13}{123}
  {3}{23}{123}  {3}{12}{23}{123}
		

Crossrefs

The non-covering version is A330282.
Costrict (or T_0) covering set-systems are A059201.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic, fully chiral multiset partitions are A330227.
Fully chiral partitions are counted by A330228.
Fully chiral covering set-systems are A330229.
Fully chiral factorizations are A330235.
MM-numbers of fully chiral multisets of multisets are A330236.

Programs

  • Mathematica
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&Length[graprms[#]]==n!&]],{n,0,3}]

Formula

Binomial transform is A330282.

A368599 Number of non-isomorphic n-element sets of singletons or pairs of elements of {1..n} with union {1..n}, or unlabeled loop-graphs with n edges covering n vertices.

Original entry on oeis.org

1, 1, 2, 5, 13, 34, 97, 277, 825, 2486, 7643, 23772, 74989, 238933, 769488, 2500758, 8199828, 27106647, 90316944, 303182461, 1025139840, 3490606305, 11967066094, 41302863014, 143493606215, 501772078429, 1765928732426, 6254738346969, 22294413256484, 79968425399831
Offset: 0

Views

Author

Gus Wiseman, Jan 06 2024

Keywords

Comments

It doesn't matter for this sequence whether we use loops such as {x,x} or half-loops such as {x}.

Examples

			The a(0) = 1 through a(4) = 13 set-systems:
  {}  {{1}}  {{1},{2}}    {{1},{2},{3}}        {{1},{2},{3},{4}}
             {{1},{1,2}}  {{1},{2},{1,3}}      {{1},{2},{3},{1,4}}
                          {{1},{1,2},{1,3}}    {{1},{2},{1,2},{3,4}}
                          {{1},{1,2},{2,3}}    {{1},{2},{1,3},{1,4}}
                          {{1,2},{1,3},{2,3}}  {{1},{2},{1,3},{2,4}}
                                               {{1},{2},{1,3},{3,4}}
                                               {{1},{1,2},{1,3},{1,4}}
                                               {{1},{1,2},{1,3},{2,4}}
                                               {{1},{1,2},{2,3},{2,4}}
                                               {{1},{1,2},{2,3},{3,4}}
                                               {{1},{2,3},{2,4},{3,4}}
                                               {{1,2},{1,3},{1,4},{2,3}}
                                               {{1,2},{1,3},{2,4},{3,4}}
		

Crossrefs

For any number of edges we have A000666, A054921, A322700.
For any number of edges of any size we have A055621, non-covering A000612.
For edges of any size we have A368186, covering case of A368731.
The labeled version is A368597, covering case of A014068.
This is the covering case of A368598.
A000085 counts set partitions into singletons or pairs.
A001515 counts length-n set partitions into singletons or pairs.
A100861 counts set partitions into singletons or pairs by number of pairs.
A111924 counts set partitions into singletons or pairs by length.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}],{n}], Union@@#==Range[n]&]]],{n,0,5}]
  • PARI
    a(n) = polcoef(G(n, O(x*x^n)) - if(n, G(n-1, O(x*x^n))), n) \\ G defined in A070166. - Andrew Howroyd, Jan 09 2024

Formula

a(n) = A070166(n,n) - A070166(n-1,n) for n > 0. - Andrew Howroyd, Jan 09 2024

Extensions

Terms a(7) and beyond from Andrew Howroyd, Jan 09 2024

A054780 Number of n-covers of a labeled n-set.

Original entry on oeis.org

1, 1, 3, 32, 1225, 155106, 63602770, 85538516963, 386246934638991, 6001601072676524540, 327951891446717800997416, 64149416776011080449232990868, 45546527789182522411309599498741023, 118653450898277491435912500458608964207578
Offset: 0

Views

Author

Vladeta Jovovic, May 21 2000

Keywords

Comments

Also, number of n X n rational {0,1}-matrices with no zero rows or columns and with all rows distinct, up to permutation of rows.

Examples

			From _Gus Wiseman_, Dec 19 2023: (Start)
Number of ways to choose n nonempty sets with union {1..n}. For example, the a(3) = 32 covers are:
  {1}{2}{3}  {1}{2}{13}  {1}{2}{123}  {1}{12}{123}  {12}{13}{123}
             {1}{2}{23}  {1}{3}{123}  {1}{13}{123}  {12}{23}{123}
             {1}{3}{12}  {1}{12}{13}  {1}{23}{123}  {13}{23}{123}
             {1}{3}{23}  {1}{12}{23}  {2}{12}{123}
             {2}{3}{12}  {1}{13}{23}  {2}{13}{123}
             {2}{3}{13}  {2}{3}{123}  {2}{23}{123}
                         {2}{12}{13}  {3}{12}{123}
                         {2}{12}{23}  {3}{13}{123}
                         {2}{13}{23}  {3}{23}{123}
                         {3}{12}{13}  {12}{13}{23}
                         {3}{12}{23}
                         {3}{13}{23}
(End)
		

Crossrefs

Main diagonal of A055154.
Covers with any number of edges are counted by A003465, unlabeled A055621.
Connected graphs of this type are counted by A057500, unlabeled A001429.
This is the covering case of A136556.
The case of graphs is A367863, covering case of A116508, unlabeled A006649.
Binomial transform is A367916.
These set-systems have ranks A367917.
The unlabeled version is A368186.
A006129 counts covering graphs, connected A001187, unlabeled A002494.
A046165 counts minimal covers, ranks A309326.

Programs

  • Mathematica
    Join[{1}, Table[Sum[StirlingS1[n+1, k+1]*(2^k - 1)^n, {k, 0, n}]/n!, {n, 1, 15}]] (* Vaclav Kotesovec, Jun 04 2022 *)
    Table[Length[Select[Subsets[Rest[Subsets[Range[n]]],{n}],Union@@#==Range[n]&]],{n,0,4}] (* Gus Wiseman, Dec 19 2023 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n, k)*binomial(2^(n-k)-1, n)) \\ Andrew Howroyd, Jan 20 2024

Formula

a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*binomial(2^(n-k)-1, n).
a(n) = (1/n!)*Sum_{k=0..n} Stirling1(n+1, k+1)*(2^k-1)^n.
G.f.: Sum_{n>=0} log(1+(2^n-1)*x)^n/((1+(2^n-1)*x)*n!). - Paul D. Hanna and Vladeta Jovovic, Jan 16 2008
a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jun 04 2022
Inverse binomial transform of A367916. - Gus Wiseman, Dec 19 2023

A301922 Regular triangle where T(n,k) is the number of unlabeled k-uniform hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 7, 3, 1, 1, 23, 29, 4, 1, 1, 122, 2102, 150, 5, 1, 1, 888, 7011184, 7013164, 1037, 6, 1, 1, 11302, 1788775603336, 29281354507753848, 1788782615612, 12338, 7, 1, 1, 262322, 53304526022885280592, 234431745534048893449761040648512, 234431745534048922729326772799024, 53304527811667884902, 274659, 8, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 19 2018

Keywords

Examples

			Triangle begins:
   1
   1   1
   1   2   1
   1   7   3   1
   1  23  29   4   1
The T(4,2) = 7 hypergraphs:
  {{1,2},{3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Row sums are A301481. Second column is A002494.

Programs

  • Maple
    g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x->
         [x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]):
    h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i]
         /igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m
         /p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq(
        `if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)):
    b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n]))
         /n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)):
    A:= proc(n, k) A(n, k):= `if`(k>n-k, A(n, n-k), b(n$2, [], k)) end:
    T:= (n, k)-> A(n, k)-A(n-1, k):
    seq(seq(T(n, k), k=1..n), n=1..9);  # Alois P. Heinz, Aug 21 2019
  • PARI
    permcount(v)={my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    rep(typ)={my(L=List(), k=0); for(i=1, #typ, k+=typ[i]; listput(L,k); while(#L0, u=vecsort(apply(f, u)); d=lex(u,v)); !d}
    Q(n,k,perm)={my(t=0); forsubset([n,k], v, t += can(Vec(v), t->perm[t])); t}
    U(n,k)={my(s=0); forpart(p=n, s += permcount(p)*2^Q(n,k,rep(p))); s/n!}
    for(n=1, 10, for(k=1, n, print1(U(n,k)-U(n-1,k), ", ")); print) \\ Andrew Howroyd, Aug 10 2019

Formula

T(n,k) = A309858(n,k) - A309858(n-1,k). - Alois P. Heinz, Aug 21 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 09 2019

A326973 Number of unlabeled set-systems covering n vertices whose dual is a weak antichain.

Original entry on oeis.org

1, 1, 3, 19, 1243
Offset: 0

Views

Author

Gus Wiseman, Aug 11 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. A weak antichain is a multiset of sets, none of which is a proper subset of any other.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 19 set-systems:
  {}  {{1}}  {{1,2}}          {{1,2,3}}
             {{1},{2}}        {{1},{2,3}}
             {{1},{2},{1,2}}  {{1},{2},{3}}
                              {{1,2},{1,3},{2,3}}
                              {{1},{2,3},{1,2,3}}
                              {{1},{2},{3},{2,3}}
                              {{1},{2},{1,3},{2,3}}
                              {{1},{2},{3},{1,2,3}}
                              {{3},{1,2},{1,3},{2,3}}
                              {{1},{2},{3},{1,3},{2,3}}
                              {{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{2,3},{1,2,3}}
                              {{2},{3},{1,2},{1,3},{2,3}}
                              {{1},{2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,2},{1,3},{2,3}}
                              {{3},{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,3},{2,3},{1,2,3}}
                              {{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Unlabeled covering set-systems are A055621.
The labeled version is A326970.
The non-covering case is A326971 (partial sums).
The case that is also T_0 is the T_1 case A326974.

A330105 MM-number of the brute-force normalization of the multiset of multisets with MM-number n.

Original entry on oeis.org

1, 2, 3, 4, 3, 6, 7, 8, 9, 6, 3, 12, 13, 14, 15, 16, 3, 18, 19, 12, 21, 6, 7, 24, 9, 26, 27, 28, 13, 30, 3, 32, 15, 6, 69, 36, 37, 38, 39, 24, 3, 42, 13, 12, 45, 14, 13, 48, 49, 18, 15, 52, 53, 54, 15, 56, 57, 26, 3, 60, 37, 6, 63, 64, 39, 30, 3, 12, 69, 138
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2019

Keywords

Comments

We define the brute-force normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the least representative, where the ordering of multisets is first by length and then lexicographically.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Crossrefs

This sequence is idempotent and its image/fixed points are A330104.
Non-isomorphic multiset partitions are A007716.
Other normalizations: A330061 (VDD MM), A330101 (brute-force BII), A330102 (VDD BII), A330105 (brute-force MM).
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]];
    brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
    Table[Map[Times@@Prime/@#&,brute[primeMS/@primeMS[n]],{0,1}],{n,100}]
Previous Showing 41-50 of 107 results. Next