cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 146 results. Next

A163640 The radical of the swinging factorial A056040 for odd indices.

Original entry on oeis.org

1, 6, 30, 70, 210, 462, 6006, 4290, 72930, 461890, 1939938, 4056234, 6760390, 1560090, 6463230, 200360130, 2203961430, 907513530, 33578000610, 22974421470, 941951280270, 5786272150230, 526024740930, 1074920122770, 7524440859390, 25583098921926, 104300326374006, 1912172650190110
Offset: 0

Views

Author

Peter Luschny, Aug 02 2009

Keywords

Comments

Let $ denote the swinging factorial. a(n) is the radical of (2*n+1)$ which is the product of the prime numbers dividing (2*n+1)$. It is the largest squarefree divisor of (2*n+1)$, and so also described as the squarefree kernel of (2*n+1)$.

Examples

			(2*5+1)$ = 2772 = 2^2*3^2*7*11. Therefore a(5) = 2*3*7*11 = 462.
		

Crossrefs

A056040(n) = n$, A163641(n) = rad(n$), A080397(n) = rad((2n)$).

Programs

  • Maple
    a := proc(n) local p; mul(p,p=numtheory[factorset]((2*n+1)!/iquo(2*n+1,2)!^2)) end:
  • Mathematica
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Times @@ FactorInteger[sf[2*n + 1]][[All, 1]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 30 2013 *)

Extensions

More terms from Michel Marcus, Aug 22 2025

A163644 Product of primes which do not exceed n and do not divide the swinging factorial n$ (A056040).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 5, 5, 5, 5, 35, 7, 7, 7, 21, 21, 105, 5, 55, 55, 165, 33, 429, 143, 1001, 1001, 1001, 1001, 1001, 91, 1547, 221, 221, 221, 4199, 323, 323, 323, 2261, 2261, 24871, 24871, 572033, 572033, 572033, 81719, 408595, 24035, 312455
Offset: 0

Views

Author

Peter Luschny, Aug 02 2009

Keywords

Examples

			a(20) = 105 because in the prime-factorization of 20$ the primes 3, 5 and 7 are missing and 3*5*7 = 105.
		

Crossrefs

Programs

  • Maple
    a := proc(n) local p; mul(p,p=select(isprime,{$1..n})
    minus numtheory[factorset](n!/iquo(n,2)!^2)) end:
  • Mathematica
    A034386[x_] := Apply[Times, Table[Prime[w], {w, 1, PrimePi[x]}]];
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f + 1, n - f]/f!];
    A163641[0] = 1; A163641[n_] := Times @@ FactorInteger[sf[n]][[All, 1]]; Join[{1}, Table[A034386[n]/A163641[n], {n, 1, 50}]] (* G. C. Greubel, Aug 01 2017 *)

Formula

a(n) = primorial(n) / rad(n$) = A034386(n) / A163641(n).

A182910 Number of unitary prime divisors of the swinging factorial (A056040) n$ = n! / floor(n/2)!^2.

Original entry on oeis.org

0, 0, 1, 2, 2, 3, 1, 2, 3, 3, 1, 2, 3, 4, 3, 3, 4, 5, 4, 5, 4, 6, 5, 6, 5, 5, 4, 4, 3, 4, 5, 6, 7, 8, 6, 6, 7, 8, 7, 7, 8, 9, 9, 10, 9, 7, 6, 7, 7, 7, 7, 8, 7, 8, 8, 10, 11, 13, 12, 13, 11, 12, 11, 10, 11, 13, 12, 13
Offset: 0

Views

Author

Peter Luschny, Mar 14 2011

Keywords

Comments

A prime divisor of n is unitary iff its exponent is 1 in the prime power factorization of n. A unitary prime divisor of the swinging factorial n$ can be smaller than n/2. For n >= 30 the swinging factorial has more unitary prime divisors than the factorial and it never has fewer unitary prime divisors. Thus a(n) >= PrimePi(n) - PrimePi(n/2).

Examples

			16$ = 2*3*3*5*11*13. So 16$ has one non-unitary prime divisor and a(16) = 4.
		

Crossrefs

Cf. A056171.

Programs

  • Maple
    UnitaryPrimeDivisor := proc(f,n) local k, F; F := f(n):
    add(`if`(igcd(iquo(F,k),k)=1,1,0),k=numtheory[factorset](F)) end;
    A056040 := n -> n!/iquo(n,2)!^2;
    A182910 := n -> UnitaryPrimeDivisor(A056040,n);
    seq(A182910(i), i=1..LEN);
  • Mathematica
    Table[Function[m, If[m == 1, 0, Count[FactorInteger[m][[All, -1]], 1]]][n!/Floor[n/2]!^2], {n, 0, 67}] (* Michael De Vlieger, Aug 02 2017 *)
  • Python
    from sympy import factorint, factorial
    def a056169(n): return 0 if n==1 else sum(1 for i in factorint(n).values() if i==1)
    def a056040(n): return factorial(n)//factorial(n//2)**2
    def a(n): return a056169(a056040(n))
    print([a(n) for n in range(68)]) # Indranil Ghosh, Aug 02 2017

A182921 Sum of exponents in prime-power factorization of the swinging factorial (A056040) n$ = n!/floor(n/2)!^2; also bigomega(n$).

Original entry on oeis.org

0, 0, 1, 2, 2, 3, 3, 4, 3, 5, 5, 6, 5, 6, 6, 8, 6, 7, 6, 7, 6, 8, 8, 9, 7, 9, 9, 12, 11, 12, 11, 12, 9, 11, 11, 13, 11, 12, 12, 14, 12, 13, 12, 13, 12, 15, 15, 16, 13, 15, 14, 16, 15, 16, 14, 16, 14, 16, 16, 17, 15, 16, 16, 19, 15, 17, 16, 17, 16, 18, 17, 18, 15
Offset: 0

Views

Author

Peter Luschny, Mar 14 2011

Keywords

Examples

			16$ = 2*3*3*5*11*13. Thus a(16) = 6.
		

Crossrefs

Programs

A182923 a(n) = n$ / A055773(n), where n$ denotes the swinging factorial (A056040).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 4, 2, 18, 36, 36, 12, 12, 24, 360, 90, 90, 20, 20, 4, 84, 168, 168, 28, 700, 1400, 37800, 5400, 5400, 720, 720, 90, 2970, 5940, 207900, 23100, 23100, 46200, 1801800, 180180, 180180, 17160
Offset: 0

Views

Author

Peter Luschny, Mar 05 2011

Keywords

Comments

a(n) = n$ * P(floor(n/2))/P(n), P(n) primorial number A034386.
A182922(n) / a(n) = A000142(n) / A056040(n) = A180064(n).

Crossrefs

Programs

  • Maple
    swingfact := n -> n! / iquo(n,2)!^2;
    A182923 := n -> swingfact(n) / mul(k, k=select(isprime, [$iquo(n,2)+1..n])):
  • Mathematica
    sf[n_] := n!/Floor[n/2]!^2;
    a[n_] := sf[n]/Numerator[n!/Floor[n/2]!^4];
    Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Jun 22 2019 *)

A190905 Euler transform of the swinging factorial A056040.

Original entry on oeis.org

1, 1, 3, 9, 18, 60, 117, 371, 747, 2199, 4697, 12735, 28571, 72815, 169176, 412440, 978086, 2316754, 5547293, 12909723, 30966639, 71357601, 170636159, 391242623, 930120982, 2128073530, 5023630830, 11486060090, 26918052717, 61539213693, 143227189518
Offset: 0

Views

Author

Peter Luschny, Jul 06 2011

Keywords

Crossrefs

Cf. A107895.

Programs

  • Maple
    EulerTrans := proc(p) local b; b := proc(n) option remember; local d, j;
    `if`(n=0,1,add(add(d*p(d),d=numtheory[divisors](j))*b(n-j),j=1..n)/n) end end:
    A190905 := EulerTrans(n->n!/iquo(n,2)!^2): seq( A190905(n),n=0..30); # After Alois P. Heinz, A000335.
  • Mathematica
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; EulerTrans[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; a = EulerTrans[sf]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 29 2013, after Maple *)

A246663 Products of swinging factorials A056040.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 20, 24, 30, 32, 36, 40, 48, 60, 64, 70, 72, 80, 96, 120, 128, 140, 144, 160, 180, 192, 216, 240, 252, 256, 280, 288, 320, 360, 384, 400, 420, 432, 480, 504, 512, 560, 576, 600, 630, 640, 720, 768, 800, 840, 864, 900, 960, 1008, 1024
Offset: 1

Views

Author

Peter Luschny, Sep 09 2014

Keywords

Crossrefs

Cf. A001013 is a sublist.

Programs

  • Mathematica
    sw[n_] := n!/(Floor[n/2]!)^2; lim = 40; For[p = 0; a = f = Table[sw[n], {n, lim}], p =!= a, p = a; a = Select[Union@@Outer[Times, f, a], #<= sw[lim]&]]; a (* Hans Havermann, Sep 09 2014 *)
  • Sage
    # For example prod_hull(A008578) are the natural numbers.
    def prod_hull(f, K):
        S = []; newS = []
        n = 0
        while f(n) <= K:
            newS.append(f(n))
            n += 1
        while newS != S:
            S = newS; T = []
            for s in S:
                M = map(lambda n: n*s , S)
                T.extend(filter(lambda n: n <= K, M))
            newS = Set(T).union(Set(S))
        return sorted(newS)
    prod_hull(lambda n: factorial(n)/factorial(n//2)^2, 1024)

A261129 Highest exponent in prime factorization of the swinging factorial (A056040).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 2, 2, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 5, 5, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 2, 4, 4, 4, 3, 3, 4, 4, 4
Offset: 2

Views

Author

Peter Luschny, Oct 31 2015

Keywords

Comments

A263922 is a subsequence.

Crossrefs

Programs

  • Maple
    swing := n -> n!/iquo(n,2)!^2:
    max_exp := n -> max(seq(s[2], s=ifactors(n)[2])):
    seq(max_exp(swing(n)), n=2..88);
  • Mathematica
    a[n_] := Max[FactorInteger[n!/Quotient[n, 2]!^2][[;; , 2]]]; Array[a, 100, 2] (* Amiram Eldar, Jul 29 2023 *)
  • Sage
    swing = lambda n: factorial(n)//factorial(n//2)^2
    max_exp = lambda n: max(e for p, e in n.factor())
    [max_exp(swing(n)) for n in (2..88)]

Formula

a(n) = A051903(A056040(n)) for n>=2.
A000120(floor(n/2)) <= a(n) <= A000523(n), (n>=2).

A163945 Triangle interpolating between (-1)^n (A033999) and the swinging factorial function (A056040) restricted to odd indices (2n+1)$ (A002457), read by rows.

Original entry on oeis.org

1, -1, 6, 1, -12, 30, -1, 18, -90, 140, 1, -24, 180, -560, 630, -1, 30, -300, 1400, -3150, 2772, 1, -36, 450, -2800, 9450, -16632, 12012, -1, 42, -630, 4900, -22050, 58212, -84084, 51480, 1, -48, 840, -7840, 44100, -155232, 336336, -411840, 218790
Offset: 0

Views

Author

Peter Luschny, Aug 07 2009

Keywords

Examples

			Triangle begins:
   1;
  -1,   6;
   1, -12,   30;
  -1,  18,  -90,   140;
   1, -24,  180,  -560,   630;
  -1,  30, -300,  1400, -3150,   2772;
   1, -36,  450, -2800,  9450, -16632, 12012;
		

Crossrefs

Row sums are the inverse binomial transform of the beta numbers (A163872).

Programs

  • Maple
    swing := proc(n) option remember; if n = 0 then 1 elif
    irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    a := proc(n, k) (-1)^(n-k)*binomial(n,k)*swing(2*k+1) end:
    seq(print(seq(a(n,k),k=0..n)),n=0..8);
  • Mathematica
    T[n_,k_] := ((-1)^(Mod[k,2]+n)*((2*k+1)!/(k!)^2)*Binomial[n,n-k]);
    Flatten[Table[T[n,k],{n,0,8},{k,0,n}]] (* Detlef Meya, Oct 07 2023 *)

Formula

For n >= 0, k >= 0, T(n, k) = (-1)^(n-k) binomial(n,k) (2*k+1)$ where i$ denotes the swinging factorial of i (A056040).
Conjectural g.f.: sqrt(1 + t)/(1 + (1 - 4*x)*t)^(3/2) = 1 + (-1 + 6*x)*t + (1 - 12*x + 30*x^2)*t^2 + .... - Peter Bala, Nov 10 2013
T(n, k) = ((-1)^(k mod 2) + n)*((2*k + 1)!/(k!)^2)*binomial(n, n - k). - Detlef Meya, Oct 07 2023

A294038 a(n) = Product_{k=0..n-1} n/gcd(n, A056040(k)).

Original entry on oeis.org

1, 1, 4, 27, 64, 3125, 108, 823543, 65536, 14348907, 12500, 285311670611, 746496, 302875106592253, 3294172, 7119140625, 1099511627776, 827240261886336764177, 1549681956, 1978419655660313589123979, 40000000000, 13349464742886867, 1141246682444
Offset: 0

Views

Author

Peter Luschny, Nov 05 2017

Keywords

Crossrefs

Programs

  • Maple
    seq(mul(n/igcd(n, A056040(k)), k=0..n-1), n=0..22);
Previous Showing 41-50 of 146 results. Next