cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A185877 Array T given by T(n,k) = k^2 +(2*n-3)*k -2*n +3, by antidiagonals.

Original entry on oeis.org

1, 3, 1, 7, 5, 1, 13, 11, 7, 1, 21, 19, 15, 9, 1, 31, 29, 25, 19, 11, 1, 43, 41, 37, 31, 23, 13, 1, 57, 55, 51, 45, 37, 27, 15, 1, 73, 71, 67, 61, 53, 43, 31, 17, 1, 91, 89, 85, 79, 71, 61, 49, 35, 19, 1, 111, 109, 105, 99, 91, 81, 69, 55, 39, 21, 1, 133, 131, 127, 121, 113, 103, 91, 77, 61, 43, 23, 1, 157, 155, 151, 145, 137, 127, 115, 101, 85, 67, 47, 25, 1, 183, 181, 177, 171, 163, 153, 141, 127, 111, 93, 73, 51, 27, 1
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

A member of the accumulation chain ... < A185879 < A185877 < A185878 < A185880 < ... (See A144112 for the definition of accumulation array).

Examples

			Northwest corner:
  1, 3,  7, 13, 21
  1, 5, 11, 19, 29
  1, 7, 15, 25, 45
  1, 9, 19, 31, 45
		

Crossrefs

Row 1 to 3: A002061, A028387, A082111.
diag (1,5,...): A056108;
diag (3,11,...): A056106;
diag (7,19,...): A003215;
diag (13,29,...): A144391;
diag (1,7,...): A003215;
diag (1,9,...): A144390.

Programs

  • Mathematica
    (* This program generates A185877, its accumulation array A185878, and its weight array A185879. *)
    f[n_,0]:=0;f[0,k_]:=0;
    f[n_,k_]:=k^2+(2n-3)k-2n+3;
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A185877 *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *)
    FullSimplify[s[n,k]]  (* formula for A185878 *)
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]]
    Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    w[m_,n_]:=f[m,n]+f[m-1,n-1]-f[m,n-1]-f[m-1,n]/;Or[m>0,n>0];
    TableForm[Table[w[n,k],{n,1,10},{k,1,15}]] (* A185879 *)
    Table[w[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten

Formula

T(n,k) = k^2 + (2*n-3)*k - 2*n + 3, k>=1, n>=1.

A185880 Second accumulation array of A185877, by antidiagonals.

Original entry on oeis.org

1, 5, 3, 16, 17, 6, 40, 56, 38, 10, 85, 140, 128, 70, 15, 161, 295, 320, 240, 115, 21, 280, 553, 670, 600, 400, 175, 28, 456, 952, 1246, 1250, 1000, 616, 252, 36, 705, 1536, 2128, 2310, 2075, 1540, 896, 348, 45, 1045, 2355, 3408, 3920, 3815, 3185, 2240, 1248, 465, 55, 1496, 3465, 5190, 6240, 6440, 5831, 4620, 3120, 1680, 605, 66, 2080, 4928, 7590, 9450, 10200, 9800, 8428, 6420, 4200, 2200
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

A member of the accumulation chain ... < A185879 < A185877 < A185878 < A185880 < ... See A144112 for the definition of accumulation array.

Examples

			Northwest corner:
   1,    5,   16,   40,   85
   3,   17,   56,  140,  295
   6,   38,  128,  320,  670
  10,   70,  240,  600, 1250
		

Crossrefs

Antidiagonal sums: A037235.
diag (1,5,...): A056108 (4th spoke on hexagonal wheel);
diag (3,11,...): A056106 (2nd spoke on hexagonal wheel);
diag (7,19,...): A003215 (hex numbers);
diag (13,29,...): A144391.

Programs

  • Mathematica
    (* This program generates A185878 first and then generates A185880 as the accumulation array of A185878. *)
    f[n_,k_]:=(k*n/6)(7-3k+2k^2-3n+3kn);
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A185878 *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}];
    FullSimplify[s[n,k]]
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* A185880 *)
    f[n_, k_] := (1/72)*k*(1 + k)*n*(1 + n)*(16 - k + 3 *k^2 + 4 *(-1 + k) *n); Table[f[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 21 2017 *)

Formula

T(n,k) = C(k,2)*C(n,2)*(3*k^2+4*k*n-k-4*n+16)/18, k>=1, n>=1.

A247612 a(n) = Sum_{k=0..7} binomial(14,k)*binomial(n,k).

Original entry on oeis.org

1, 15, 120, 680, 3060, 11628, 38760, 116280, 316767, 788161, 1805100, 3840420, 7660250, 14446134, 25947612, 44668692, 74091645, 118941555, 185495056, 281936688, 418766304, 609260960, 869994720, 1221419808, 1688512539, 2301487461, 3096583140, 4116923020
Offset: 0

Views

Author

Vincenzo Librandi, Sep 22 2014

Keywords

Crossrefs

Programs

  • Magma
    [(1680+386012*n-958048*n^2+943761*n^3-455455*n^4+123123*n^5- 17017*n^6+1144*n^7)/1680: n in [0..40]];
    
  • Magma
    I:=[1,15,120,680,3060,11628,38760, 116280]; [n le 8 select I[n] else 8*Self(n-1)-28*Self(n-2)+56*Self(n-3)-70*Self(n-4)+56*Self(n-5) -28*Self(n-6)+8*Self(n-7)-Self(n-8): n in [1..40]];
    
  • Mathematica
    Table[(1680 + 386012 n - 958048 n^2 + 943761 n^3 - 455455 n^4 + 123123 n^5 - 17017 n^6 + 1144 n^7)/1680, {n, 0, 40}] (* or *) CoefficientList[Series[(1 + 7 x + 28 x^2 + 84 x^3 + 210 x^4 + 462 x^5 + 924 x^6 + 1716 x^7)/(1 - x)^8, {x, 0, 40}], x]
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,15,120,680,3060,11628,38760,116280},30] (* Harvey P. Dale, May 12 2017 *)
  • Sage
    m=7; [sum((binomial(2*m,k)*binomial(n,k)) for k in (0..m)) for n in (0..40)] # Bruno Berselli, Sep 22 2014

Formula

G.f.: (1 + 7*x + 28*x^2 + 84*x^3 + 210*x^4 + 462*x^5 + 924*x^6 + 1716*x^7) / (1-x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
a(n) = (1680 + 386012*n - 958048*n^2 + 943761*n^3 - 455455*n^4 + 123123*n^5 - 17017*n^6 + 1144*n^7)/1680.

Extensions

Definition edited by Robert Israel, Sep 22 2014

A113653 Isolated semiprimes in the hexagonal spiral.

Original entry on oeis.org

6, 51, 69, 82, 91, 183, 194, 221, 249, 265, 287, 289, 309, 314, 319, 323, 355, 371, 403, 417, 437, 469, 478, 511, 517, 519, 533, 579, 589, 649, 681, 689, 731, 749, 758, 807, 838, 849, 926, 943, 951, 961, 965, 979, 1011, 1018, 1037, 1055, 1057, 1067, 1077, 1099, 1126, 1145, 1149, 1154, 1159
Offset: 1

Views

Author

Jonathan Vos Post, Jan 16 2006

Keywords

Comments

Isolated semiprimes in the hexagonal spiral of A003215 and A001399, which is centered on 0. Of course such a spiral can be constructed beginning with any integer. Centering on 0 gives the interesting partition and multigraph equalities of A001399.
Integers in A001358 which are not adjacent in any of six directions to any other integer in A001358 when arranged in the hexagonal spiral.
An analog of A113688 "Isolated semiprimes in the [square] spiral," and of the hexagonal prime spiral of [Abbott 2005; Weisstein, "Prime Spiral", MathWorld].
Unfortunately the original submission (which has been preserved as the "dead" sequence A335704) omitted the number 44 from the spiral, which has caused an enormous amount of trouble. - N. J. A. Sloane, Jun 27 2020

Examples

			The spiral begins:
                120-119-118-117-116-115-114
                 /                         \
              121  85--84--83-*82*-81--80 113
               /   /                     \   \
            122  86  56--55--54--53--52  79 112
             /   /   /                 \   \   \
          123  87  57  33--32--31--30 *51* 78 111
           /   /   /   /             \   \   \   \
        124  88  58  34  16--15--14  29  50  77 110
         /   /   /   /   /         \   \   \   \   \
      125  89  59  35  17   5---4  13  28  49  76 109
       /   /   /   /   /   /     \   \   \   \   \   \
    126  90  60  36  18  *6*  0   3  12  27  48  75 108
     /   /   /   /   /   /   /   /   /   /   /   /   /
  127 *91* 61  37  19   7   1---2  11  26  47  74 107 146
     \   \   \   \   \   \         /   /   /   /   /   /
    128  92  62  38  20   8---9--10  25  46  73 106 145
       \   \   \   \   \             /   /   /   /   /
      129  93  63  39  21--22--23--24  45  72 105 144
         \   \   \   \                 /   /   /   /
        130  94  64  40--41--42--43--44  71 104 143
           \   \   \                     /   /   /
          131  95  65--66--67--68-*69*-70 103 142
             \   \                         /   /
            132  96--97--98--99-100-101-102 141
               \                             /
              133-134-135-136-137-138-139-140
		

References

  • Abbott, P. (Ed.). "Mathematica One-Liners: Spiral on an Integer Lattice." Mathematica J. 1, 39, 1990.

Crossrefs

For the sequence of isolated primes see A335916.
Related sequences:
A113519 Semiprimes in 1st spoke of a hexagonal spiral starting at 1 (A056105).
A113524 Semiprimes in 2nd spoke of a hexagonal spiral (A056106).
A113525 Semiprimes in 3rd spoke of a hexagonal spiral (A056107).
A113527 Semiprimes in 4th spoke of a hexagonal spiral (A056108).
A113528 Semiprimes in 5th spoke of a hexagonal spiral (A056109).
A113530 Semiprimes in 6th spoke of a hexagonal spiral (A003215).

Extensions

Corrected and edited by N. J. A. Sloane, Jun 27 2020. Thanks to Jeffrey K. Aronson for pointing out the error in the original submission.
Terms a(4) onwards corrected by R. J. Mathar, Jun 29 2020

A134234 Triangle read by rows, n-th row = n terms of 2n, 2n+2, 2n+4, ..., 1; with a(1) = 1.

Original entry on oeis.org

1, 4, 1, 6, 8, 1, 8, 10, 12, 1, 10, 12, 14, 16, 1, 12, 14, 16, 18, 20, 1, 14, 16, 18, 20, 22, 24, 1, 16, 18, 20, 22, 24, 26, 28, 1, 18, 20, 22, 24, 26, 28, 30, 32, 1, 20, 22, 24, 26, 28, 30, 32, 34, 36, 1
Offset: 1

Views

Author

Gary W. Adamson, Oct 14 2007

Keywords

Comments

Row sums = A056108: (1, 5, 15, 31, 53, ...).

Examples

			First few rows of the triangle:
   1;
   4,  1;
   6,  8,  1;
   8, 10, 12,  1;
  10, 12, 14, 16, 1;
  ...
		

Crossrefs

Cf. A056108.

Programs

  • Maple
    seq(op([seq(2*n+2*k,k=0..n-2),1]),n=1..10); # Robert Israel, Jan 15 2016
  • Mathematica
    Flatten[Table[Join[{1},Range[n,2n-3,2]],{n,4,30,2}]] (* Harvey P. Dale, Nov 06 2013 *)

Formula

G.f.: 2*x/(1-x)^2 - 2*(2-x)/(1-x)*Sum_{n>=1} n*x^(n*(n+1)/2) + (3-x)/(1-x)*Sum_{n>=1} x^(n*(n+1)/2). - Robert Israel, Jan 15 2016

A247609 a(n) = Sum_{k=0..4} binomial(8,k)*binomial(n,k).

Original entry on oeis.org

1, 9, 45, 165, 495, 1231, 2639, 5055, 8885, 14605, 22761, 33969, 48915, 68355, 93115, 124091, 162249, 208625, 264325, 330525, 408471, 499479, 604935, 726295, 865085, 1022901, 1201409, 1402345, 1627515, 1878795, 2158131, 2467539, 2809105, 3184985, 3597405
Offset: 0

Views

Author

Vincenzo Librandi, Sep 22 2014

Keywords

Crossrefs

Programs

  • Magma
    [(12-58*n+217*n^2-98*n^3+35*n^4)/12: n in [0..40]];
    
  • Magma
    [1+8*Binomial(n, 1)+28*Binomial(n, 2)+56*Binomial(n, 3)+70*Binomial(n,4): n in [0..40]];
    
  • Magma
    I:=[1,9,45,165,495]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]];
    
  • Mathematica
    Table[(12 - 58 n + 217 n^2 - 98 n^3 + 35 n^4)/12, {n, 0, 50}] (* or *) CoefficientList[Series[(1 + 4 x + 10 x^2 + 20 x^3 + 35 x^4)/(1 - x)^5, {x, 0, 50}], x]
    LinearRecurrence[{5,-10,10,-5,1},{1,9,45,165,495},40] (* Harvey P. Dale, Oct 19 2024 *)
  • Sage
    m=4; [sum((binomial(2*m,k)*binomial(n,k)) for k in (0..m)) for n in (0..40)] # Bruno Berselli, Sep 22 2014

Formula

G.f.: (1 + 4*x + 10*x^2 + 20*x^3 + 35*x^4)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = (12 - 58*n + 217*n^2 - 98*n^3 + 35*n^4)/12.
a(n) = 1 + 8*Binomial(n, 1) + 28*Binomial(n, 2) + 56*Binomial(n, 3) + 70*Binomial(n, 4).

A247611 a(n) = Sum_{k=0..6} binomial(12,k)*binomial(n,k).

Original entry on oeis.org

1, 13, 91, 455, 1820, 6188, 18564, 49596, 119139, 260743, 527065, 996205, 1778966, 3027038, 4942106, 7785882, 11891061, 17673201, 25643527, 36422659, 50755264, 69525632, 93774176, 124714856, 163753527, 212507211, 272824293, 346805641, 436826650
Offset: 0

Views

Author

Vincenzo Librandi, Sep 22 2014

Keywords

Crossrefs

Programs

  • Magma
    [(120-8042*n+20581*n^2-17380*n^3+7645*n^4-1518*n^5+ 154*n^6)/120: n in [0..40]];
    
  • Magma
    I:=[1,13,91,455,1820,6188,18564]; [n le 7 select I[n] else 7*Self(n-1)-21*Self(n-2)+35*Self(n-3)-35*Self(n-4)+21*Self(n-5)-7*Self(n-6)+Self(n-7): n in [1..40]];
    
  • Mathematica
    Table[(120 - 8042 n + 20581 n^2 - 17380 n^3 + 7645 n^4 - 1518 n^5 + 154 n^6)/120, {n, 0, 40}] (* or *) CoefficientList[Series[(1 + 6 x + 21 x^2 + 56 x^3 + 126 x^4 + 252 x^5 + 462 x^6)/(1 - x)^7, {x, 0, 40}], x]
  • Sage
    m=6; [sum((binomial(2*m,k)*binomial(n,k)) for k in (0..m)) for n in (0..40)] # Bruno Berselli, Sep 22 2014

Formula

G.f.: (1 + 6*x + 21*x^2 + 56*x^3 + 126*x^4 + 252*x^5 + 462*x^6) / (1-x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
a(n) = (120 - 8042*n + 20581*n^2 - 17380*n^3 + 7645*n^4 -1518*n^5 + 154*n^6)/120.

A374378 Iterated rascal triangle R2: T(n,k) = Sum_{m=0..2} binomial(n-k,m)*binomial(k,m).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 19, 15, 6, 1, 1, 7, 21, 31, 31, 21, 7, 1, 1, 8, 28, 46, 53, 46, 28, 8, 1, 1, 9, 36, 64, 81, 81, 64, 36, 9, 1, 1, 10, 45, 85, 115, 126, 115, 85, 45, 10, 1, 1, 11, 55, 109, 155, 181, 181, 155, 109, 55, 11, 1
Offset: 0

Views

Author

Kolosov Petro, Jul 06 2024

Keywords

Comments

Triangle T(n,k) is the second triangle R2 among the rascal-family triangles; A374452 is triangle R3; A077028 is triangle R1.
Triangle T(n,k) equals Pascal's triangle A007318 through row 2i+1, i=2 (i.e., row 5).
Triangle T(n,k) equals Pascal's triangle A007318 through column i, i=2 (i.e., column 2).

Examples

			Triangle begins:
--------------------------------------------------
k=     0   1   2   3    4    5    6   7   8   9 10
--------------------------------------------------
n=0:   1
n=1:   1   1
n=2:   1   2   1
n=3:   1   3   3   1
n=4:   1   4   6   4    1
n=5:   1   5  10  10    5    1
n=6:   1   6  15  19   15    6    1
n=7:   1   7  21  31   31   21    7   1
n=8:   1   8  28  46   53   46   28   8   1
n=9:   1   9  36  64   81   81   64  36   9   1
n=10:  1  10  45  85  115  126  115  85  45  10  1
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_]:=Sum[Binomial[n - k, m]*Binomial[k, m], {m, 0, 2}]; Column[Table[t[n, k], {n, 0, 12}, {k, 0, n}], Center]

Formula

T(n,k) = 1 + k*(n-k) + (1/4)*(k-1)*k*(n-k-1)*(n-k).
Row sums give A006261(n).
Diagonal T(n+1, n) gives A000027(n).
Diagonal T(n+2, n) gives A000217(n).
Diagonal T(n+3, n) gives A005448(n).
Diagonal T(n+4, n) gives A056108(n).
Diagonal T(n+5, n) gives A212656(n).
Column k=3 difference binomial(n+6, 3) - T(n+6, 3) gives C(n+3,3)=A007318(n+3,3).
Column k=4 difference binomial(n+7, 4) - T(n+7, 4) gives fifth column of (1,4)-Pascal triangle A095667.
G.f.: (1 + 3*x^4*y^2 - (2*x + 3*x^3*y)*(1 + y) + x^2*(1 + 5*y + y^2))/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Jul 09 2024

A247610 a(n) = Sum_{k=0..5} binomial(10,k)*binomial(n,k).

Original entry on oeis.org

1, 11, 66, 286, 1001, 3003, 7798, 17858, 36873, 70003, 124130, 208110, 333025, 512435, 762630, 1102882, 1555697, 2147067, 2906722, 3868382, 5070009, 6554059, 8367734, 10563234, 13198009, 16335011, 20042946, 24396526, 29476721, 35371011, 42173638, 49985858
Offset: 0

Views

Author

Vincenzo Librandi, Sep 22 2014

Keywords

Crossrefs

Programs

  • Magma
    [(20+508*n-925*n^2+820*n^3-245*n^4+42*n^5)/20: n in [0..40]];
    
  • Magma
    I:=[1,11,66,286,1001,3003]; [n le 6 select I[n] else 6*Self(n-1)-15*Self(n-2)+20*Self(n-3)-15*Self(n-4)+6*Self(n-5)-Self(n-6): n in [1..40]];
    
  • Mathematica
    Table[(20 + 508 n - 925 n^2 + 820 n^3 - 245 n^4 + 42 n^5)/20, {n, 0, 40}] (* or *) CoefficientList[Series[(1 + 5 x + 15 x^2 + 35 x^3 + 70 x^4 + 126 x^5)/(1 - x)^6, {x, 0, 40}], x]
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,11,66,286,1001,3003},40] (* Harvey P. Dale, Apr 20 2022 *)
  • Sage
    m=5; [sum((binomial(2*m,k)*binomial(n,k)) for k in (0..m)) for n in (0..40)] # Bruno Berselli, Sep 22 2014

Formula

G.f.: (1 + 5*x + 15*x^2 + 35*x^3 + 70*x^4 + 126*x^5) / (1-x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = (20 + 508*n - 925*n^2 + 820*n^3 - 245*n^4 + 42*n^5)/20.

A247613 a(n) = Sum_{k=0..8} binomial(16,k)*binomial(n,k).

Original entry on oeis.org

1, 17, 153, 969, 4845, 20349, 74613, 245157, 735471, 2031535, 5189327, 12316239, 27322191, 57029103, 112740255, 212383935, 383358645, 666220005, 1119362365, 1824861005, 2895653673, 4484253081, 6793194849, 10087438257, 14708950035, 21093714291
Offset: 0

Views

Author

Vincenzo Librandi, Sep 23 2014

Keywords

Crossrefs

Programs

  • Magma
    m:=8; [&+[Binomial(2*m,k)*Binomial(n,k): k in [0..m]]: n in [0..40]];
    
  • Magma
    [(20160-15076944*n+40499716*n^2-42247940*n^3 +23174515*n^4-7234136*n^5+1335334*n^6-134420*n^7 +6435*n^8)/20160: n in [0..40]];
    
  • Mathematica
    Table[(20160 - 15076944 n + 40499716 n^2 - 42247940 n^3 + 23174515 n^4 - 7234136 n^5 + 1335334 n^6 - 134420 n^7 + 6435 n^8)/20160, {n, 0, 40}] (* or *) CoefficientList[Series[(1 + 8 x + 36 x^2 + 120 x^3 + 330 x^4 + 792 x^5 + 1716 x^6 + 3432 x^7 + 6435 x^8)/(1 - x)^9, {x, 0, 40}], x]
    Table[Sum[Binomial[16,k]Binomial[n,k],{k,0,8}],{n,0,30}] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,17,153,969,4845,20349,74613,245157,735471},40] (* Harvey P. Dale, Mar 25 2015 *)
  • Sage
    m=8; [sum((binomial(2*m,k)*binomial(n,k)) for k in (0..m)) for n in (0..40)] # Bruno Berselli, Sep 23 2014

Formula

G.f.: (1 + 8*x + 36*x^2 + 120*x^3 + 330*x^4 + 792*x^5 + 1716*x^6 + 3432*x^7 + 6435*x^8) / (1-x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9).
a(n) = (20160 - 15076944*n + 40499716*n^2 - 42247940*n^3 + 23174515*n^4 - 7234136*n^5 + 1335334*n^6 - 134420*n^7 + 6435*n^8) / 20160.
Previous Showing 21-30 of 37 results. Next