cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A215697 Primes p = 2x + 1 such that x^2 + x + 41 is prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 97, 101, 103, 107, 109, 127, 137, 139, 149, 151, 157, 167, 173, 181, 191, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 283, 293, 307, 313, 317, 331
Offset: 1

Views

Author

Pierre CAMI, Aug 21 2012

Keywords

Examples

			17 is in the sequence because, given x = (17 - 1)/2 = 8, we have 8^2 + 8 + 41 = 113 which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100]], PrimeQ[((# - 1)/2)^2 + ((# - 1)/2) + 41] &] (* Alonso del Arte, Aug 21 2012 *)
  • PARI
    for(x=1, 1e3, if(ispseudoprime(2*x+1), if(ispseudoprime(x^2+x+41), print1(2*x+1, ", ")))) \\ Felix Fröhlich, Aug 16 2014

A319906 Number of prime numbers of the form k^2 + k + 41 below 10^n.

Original entry on oeis.org

0, 8, 31, 86, 221, 581, 1503, 4149, 11355, 31985, 90940, 261081, 756081, 2208197, 6483148, 19132652, 56714624, 168806741, 504209234
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2018

Keywords

Examples

			The first 8 values of k^2 + k + 41 for k = 0 to 7 are above 10 and below 100: 41, 43, 47, 53, 61, 71, 83, 97, thus a(1) = 0 and a(2) = 8.
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.

Crossrefs

Programs

  • Mathematica
    f[n_] := n^2 + n + 41; c = 0; k = 0; a={}; Do[f1 = f[k]; While[f1 < 10^n, If[PrimeQ[f1], c++]; k++; f1 = f[k]];  AppendTo[a, c], {n, 1, 10}]; a

Formula

According to Hardy and Littlewood's Conjecture F: a(n) ~ 2 * C * 10^(n/2)/(n*log(10)), where C = 3.319773... (Hardy-Littlewood constant for x^2+x+41, A221712).

A139220 Numbers k such that 41+(k+k^2)/2 = 41+A000217(k) is prime.

Original entry on oeis.org

0, 3, 11, 20, 23, 27, 32, 39, 44, 48, 51, 56, 59, 60, 83, 104, 108, 111, 116, 128, 132, 135, 143, 171, 188, 203, 207, 212, 227, 240, 251, 263, 275, 296, 300, 312, 315, 324, 356, 359, 363, 380, 384, 392, 399, 408, 443, 447, 476, 479, 483, 504, 507, 515, 527, 528
Offset: 1

Views

Author

Zak Seidov, Apr 11 2008

Keywords

Comments

Corresponding values of primes are in A139219.
Numbers k such that both 41+(k+k^2)/2 and 41+(k+k^2) are primes, are in A139221.

Examples

			If k = 11 then 41 + (k + k^2) / 2 = 107 (prime).
		

Crossrefs

Programs

  • Magma
    [k:k in [0..530]| IsPrime(41+(k+k^2) div 2)]; // Marius A. Burtea, Feb 12 2020
  • Mathematica
    Select[Table[Range[0,1000]],PrimeQ[41+(#+#^2)/2]&]
  • PARI
    is(n)=isprime(n*(n+1)/2+41) \\ Charles R Greathouse IV, Aug 16 2015
    

A141489 Numbers k such that k^2 + k + 257 is prime.

Original entry on oeis.org

0, 2, 3, 4, 7, 9, 10, 11, 13, 14, 17, 18, 20, 21, 23, 24, 25, 27, 28, 30, 31, 34, 37, 41, 42, 44, 48, 49, 51, 53, 56, 59, 60, 63, 65, 66, 67, 69, 70, 73, 74, 77, 79, 80, 81, 83, 88, 90, 91, 93, 94, 95, 100, 101, 104, 107, 111, 114, 115, 116, 119, 122, 125, 129, 135, 137
Offset: 1

Views

Author

Parthasarathy Nambi, Aug 09 2008

Keywords

Examples

			If k=0, then k^2 + k + 257 = 257 (prime).
If k=100, then k^2 + k + 257 = 10357 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in [0..5000] |IsPrime(n^2+n+257)]; // Vincenzo Librandi, Nov 25 2010
    
  • Mathematica
    Select[Range[0,200],PrimeQ[#^2+#+257]&] (* Harvey P. Dale, Jun 07 2016 *)
  • PARI
    isok(n) = isprime(n^2+n+257); \\ Michel Marcus, Mar 12 2017

Extensions

More terms from Vincenzo Librandi, Mar 25 2010

A228123 Number of primes generated from Euler's polynomial x^2 + x + 41 from x = 1 to 10^n.

Original entry on oeis.org

1, 10, 86, 581, 4148, 31984, 261080, 2208196, 19132652, 168806740, 1510676802
Offset: 0

Views

Author

Shyam Sunder Gupta, Aug 11 2013

Keywords

Examples

			a(4) = 4148 because the number of primes generated from Euler's polynomial x^2 + x + 41 from x = 1 to 10^4 are 4148.
		

Crossrefs

Programs

  • Mathematica
    a = 0; n = 1; t = {}; Do[If[PrimeQ[x^2 + x + 41], a = a + 1]; If[Mod[x, n] == 0, n = n*10; AppendTo[t, a]], {x, 1, 1000000000}]; t

Formula

a(n) = A331876(n) - 1. - Amiram Eldar, Sep 23 2023

Extensions

a(10) from Amiram Eldar, Sep 23 2023

A250394 Numbers k such that 56211383760397 + 44546738095860*k is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 27, 40, 64, 72, 73, 74, 80, 82, 86, 90, 91, 92, 93, 94, 98, 105, 109, 114, 123, 124, 136, 137, 146, 153, 156, 158, 159, 160, 166, 183, 185, 186, 194, 199, 204, 213, 216, 217, 228
Offset: 1

Views

Author

Vincenzo Librandi, Nov 21 2014

Keywords

Comments

Terms up to 22 are consecutive. Arithmetic progression found in 2004 by Markus Frind, Paul Underwood, and Paul Jobling (see Green and Tao, 2008).

Crossrefs

Programs

  • Magma
    [n: n in [0..300] | IsPrime(56211383760397+44546738095860*n)];
    
  • Mathematica
    Select[Range[0, 300], PrimeQ[56211383760397 + 44546738095860 #]&]
  • PARI
    is(n)=isprime(56211383760397+44546738095860*n) \\ Charles R Greathouse IV, Jun 13 2017

A250395 Numbers k such that 11410337850553 + 4609098694200*k is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 26, 30, 31, 41, 43, 50, 57, 61, 69, 75, 88, 90, 98, 99, 101, 108, 116, 127, 128, 131, 132, 133, 146, 154, 156, 159, 160, 162, 164, 165, 171, 172, 182, 183, 188, 191, 193, 194, 197
Offset: 1

Views

Author

Vincenzo Librandi, Nov 21 2014

Keywords

Comments

Terms up to 21 are consecutive. Arithmetic progression found by Pritchard et al. (1995).

Crossrefs

Programs

  • Magma
    [n: n in [0..200] | IsPrime(11410337850553+4609098694200*n)];
    
  • Mathematica
    Select[Range[0, 300], PrimeQ[11410337850553 + 4609098694200 #] &]
  • PARI
    is(n)=isprime(11410337850553+4609098694200*n) \\ Charles R Greathouse IV, Jun 13 2017

A215714 Sophie Germain primes q such that q^2 + q + 41 is prime.

Original entry on oeis.org

2, 3, 5, 11, 23, 29, 53, 83, 113, 131, 179, 191, 233, 281, 293, 359, 419, 509, 641, 653, 659, 683, 719, 743, 809, 911, 953, 1013, 1019, 1103, 1289, 1439, 1481, 1511, 1601, 1733, 1811, 1901, 1931, 2003, 2039, 2339, 2393, 2549, 2693, 2903, 2939, 3023, 3299, 3329
Offset: 1

Views

Author

Pierre CAMI, Aug 21 2012

Keywords

Comments

By definition, p = 2 * q + 1 is prime and (p^2 + 163)/4 = q^2 + q + 41 is also prime.

Examples

			29 is in the sequence because not only is 2 * 29 + 1 = 59 a prime, so is 29^2 + 29 + 41 = 911.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[500]], PrimeQ[2# + 1] && PrimeQ[#^2 + # + 41] &] (* Alonso del Arte, Aug 21 2012 *)

Formula

A005384 INTERSECT A056561. - R. J. Mathar, Aug 23 2012

A215725 Numbers x such that 2*x+1 is prime as is 2*x+3 and x^2+x+41 and (x+1)^2+(x+1)+41.

Original entry on oeis.org

1, 2, 5, 8, 14, 20, 29, 35, 50, 53, 68, 74, 98, 113, 119, 134, 230, 404, 413, 509, 575, 650, 713, 725, 809, 893, 935, 938, 974, 1013, 1043, 1133, 1190, 1400, 1625, 1730, 1778, 1958, 2045, 2318, 2510, 2933, 2939, 3224, 3344, 3389, 3743, 3773
Offset: 1

Views

Author

Pierre CAMI, Aug 22 2012

Keywords

Comments

Subsequence of A056561.
p=x^2+x+41 and q = (x+1)^2+(x+1)+41, (x+p)^2+x+p+41 = p*q is a semiprime.

Examples

			1^2+1+41=43=p , 2^2+2+41=47=q , (43+1)^2+(43+1)+41=p*q.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[4000],And@@PrimeQ[{2#+1,2#+3,#^2+#+41,(#+1)^2+#+42}]&] (* Harvey P. Dale, Jun 02 2014 *)

A253239 Numbers k such that k^2 + k + 72491 is prime.

Original entry on oeis.org

1, 2, 3, 6, 7, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 53, 55, 56, 57, 58, 59, 64, 65, 66, 67, 72, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 98, 100
Offset: 1

Views

Author

Eric Chen, Apr 19 2015

Keywords

Comments

Of the first 10000 natural numbers, 4534 are in this sequence, making the density about 45%, quite large! (However, 72491 is not prime; it equals 71*1021, so no multiples of 71 or 1021 are in this sequence.)

Examples

			k       k^2 + k + 72491
0       72491 = 71*1021
1       72493 (prime)
2       72497 (prime)
3       72503 (prime)
4       72511 = 59*1229
5       72521 = 47*1543
6       72533 (prime)
7       72547 (prime)
8       72563 = 149*487
9       72581 = 181*401
etc.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..100] | IsPrime(n^2 + n + 72491)]; // Vincenzo Librandi, Apr 20 2015
  • Maple
    select(t -> isprime(t^2+t+72491), [$0..100]);
  • Mathematica
    Select[Range[100], PrimeQ[#^2 + # + 72491] &]
  • PARI
    v=[ ]; for(n=0, 100, if(isprime(n^2+n+72491), v=concat(v, n), )); v
    
Previous Showing 11-20 of 22 results. Next