A120257
Triangle of Hankel transforms of certain binomial sums.
Original entry on oeis.org
1, 2, -1, 3, -6, -1, 4, -20, -20, 1, 5, -50, -175, 70, 1, 6, -105, -980, 1764, 252, -1, 7, -196, -4116, 24696, 19404, -924, -1, 8, -336, -14112, 232848, 731808, -226512, -3432, 1, 9, -540, -41580, 1646568, 16818516, -24293412, -2760615, 12870, 1, 10, -825, -108900, 9343620, 267227532, -1447482465
Offset: 0
Triangle begins
1;
2, -1;
3, -6, -1;
4, -20, -20, 1;
5, -50, -175, 70, 1;
6, -105, -980, 1764, 252, -1;
7, -196, -4116, 24696, 19404, -924, -1;
8, -336, -14112, 232848, 731808, -226512, -3432, 1;
-
T(n, k) = (-1)^((k+1)\2) * prod(j=0, n-k-1, binomial(2*k+2+j, k+1)/binomial(k+1+j, j)); \\ Michel Marcus, Jan 13 2022
A142470
Triangle T(n, k) = ( (k+2)/(2*binomial(k+2, 2)^2) )*binomial(n, k)^2*binomial(n+1, k)*binomial(n+2, k), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 30, 30, 1, 1, 80, 300, 80, 1, 1, 175, 1750, 1750, 175, 1, 1, 336, 7350, 19600, 7350, 336, 1, 1, 588, 24696, 144060, 144060, 24696, 588, 1, 1, 960, 70560, 790272, 1728720, 790272, 70560, 960, 1, 1, 1485, 178200, 3492720, 14669424, 14669424, 3492720, 178200, 1485, 1
Offset: 0
The triangle begins as:
1;
1, 1;
1, 8, 1;
1, 30, 30, 1;
1, 80, 300, 80, 1;
1, 175, 1750, 1750, 175, 1;
1, 336, 7350, 19600, 7350, 336, 1;
1, 588, 24696, 144060, 144060, 24696, 588, 1;
1, 960, 70560, 790272, 1728720, 790272, 70560, 960, 1;
1, 1485, 178200, 3492720, 14669424, 14669424, 3492720, 178200, 1485, 1;
-
A142470:= func< n,k | ( (k+2)/(2*Binomial(k+2, 2)^2) )*Binomial(n, k)^2*Binomial(n+1, k)*Binomial(n+2, k) >;
[A142470(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 03 2021
-
f[n_, k_]:= f[n, k]= Binomial[n, k]*Product[j!*(n+j)!/((k+j)!*(n-k+j)!), {j,1,2}];
T[n_, k_]:= Binomial[n, k]*f[n, k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 03 2021 *)
-
def A142470(n, k): return (2/((k+1)^2*(k+2)))*Binomial(n, k)^2*Binomial(n+1, k)*Binomial(n+2, k)
flatten([[A142470(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 03 2021
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 24, 24, 1, 1, 60, 240, 60, 1, 1, 120, 1200, 1200, 120, 1, 1, 210, 4200, 10500, 4200, 210, 1, 1, 336, 11760, 58800, 58800, 11760, 336, 1, 1, 504, 28224, 246960, 493920, 246960, 28224, 504, 1, 1, 720, 60480, 846720, 2963520, 2963520, 846720, 60480, 720, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 24, 24, 1;
1, 60, 240, 60, 1;
1, 120, 1200, 1200, 120, 1;
1, 210, 4200, 10500, 4200, 210, 1;
1, 336, 11760, 58800, 58800, 11760, 336, 1;
1, 504, 28224, 246960, 493920, 246960, 28224, 504, 1;
1, 720, 60480, 846720, 2963520, 2963520, 846720, 60480, 720, 1;
1, 990, 118800, 2494800, 13970880, 24449040, 13970880, 2494800, 118800, 990, 1;
...
-
T:= func< n,k | k eq 0 or k eq n select 1 else 2*Binomial(n-1,k-1)*Binomial(n,k)*Binomial(n+1,k+1)*(n-k)/(n-k+1) >;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 17 2021
-
A090443 := proc(n) (n+2)!*(n+1)!*n!/2 ; end proc:
A173882 := proc(n,m) if m=0 or m= n then 1; else A090443(n-1)/A090443(m-1)/A090443(n-m-1) ; end if; end proc:
seq(seq(A173882(n,m),m=0..n),n=0..5) ; # R. J. Mathar, Mar 19 2011
-
T[n_,k_]:= If[k==0||k==n, 1, 2*Binomial[n-1,k-1]*Binomial[n,k]*Binomial[n+1,k+1]*(n-k)/(n-k+1)];
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 17 2021 *)
-
def T(n,k): return 1 if (k==0 or k==n) else 2*binomial(n-1,k-1)*binomial(n,k)*binomial(n+1,k+1)*(n-k)/(n-k+1)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 17 2021
A095265
A sequence generated from a 4th degree Pascal's Triangle polynomial.
Original entry on oeis.org
1, 22, 103, 284, 605, 1106, 1827, 2808, 4089, 5710, 7711, 10132, 13013, 16394, 20315, 24816, 29937, 35718, 42199, 49420, 57421, 66242, 75923, 86504, 98025, 110526, 124047, 138628, 154309, 171130, 189131, 208352, 228833, 250614, 273735, 298236
Offset: 1
a(13) = 13013 = 4*a(12) - 6*a(11) + 4*a(10) - a(9) = 4*10132 - 6*7711 + 4*5710 - 4089.
a(6) = 1106 since M^6 * [1 0 0 0] = [ 1 6 66 1106].
a(6) = 1106 = f(n) = (20/3)(6)^3 -10*(6^2) +(13/3)*6 = 1440 - 360 + 26.
-
a:= n-> (20*n^2-30*n+13)*n/3:
seq(a(n), n=1..50); # Alois P. Heinz, May 25 2013
-
a[n_] := (MatrixPower[{{1, 0, 0, 0}, {1, 1, 0, 0}, {1, 4, 1, 0}, {1, 10, 10, 1}}, n].{{1}, {0}, {0}, {0}})[[4, 1]]; Table[ a[n], {n, 36}] (* Robert G. Wilson v, Jun 05 2004 *)
A155834
A triangle sequence of general recursive Sierpinski-Pascal minus general Narayana with adjusted n,m levels and zeros out:k=2; t(n,m)=Pascal(n,m,k-1)-Narayana(n-1,m-1,2*(k-1)).
Original entry on oeis.org
1, 1, 6, 16, 6, 22, 127, 127, 22, 64, 701, 1436, 701, 64, 163, 3117, 11503, 11503, 3117, 163, 382, 12088, 74122, 131494, 74122, 12088, 382, 848, 42890, 413612, 1193930, 1193930, 413612, 42890, 848, 1816, 143562, 2094588, 9280734, 14992440, 9280734
Offset: 4
{1, 1},
{6, 16, 6},
{22, 127, 127, 22},
{64, 701, 1436, 701, 64},
{163, 3117, 11503, 11503, 3117, 163},
{382, 12088, 74122, 131494, 74122, 12088, 382},
{848, 42890, 413612, 1193930, 1193930, 413612, 42890, 848},
{1816, 143562, 2094588, 9280734, 14992440, 9280734, 2094588, 143562, 1816},
{3797, 462541, 9928140, 64761204, 158774838, 158774838, 64761204, 9928140, 462541, 3797},
{7814, 1453700, 44960878, 418557816, 1489425900, 2250878592, 1489425900, 418557816, 44960878, 1453700, 7814},
{15914, 4495909, 197226603, 2558716162, 12781854516, 27839586777, 27839586777, 12781854516, 2558716162, 197226603, 4495909, 15914}
-
Clear[A, a0, b0, n, k, m, t, i];
A[n_, 1, m_] := 1; A[n_, n_, m_] := 1;
A[n_, k_, m_] := (m*n - m*k + 1)*A[n - 1, k - 1, m] + (m*k - (m - 1))*A[n - 1, k, m];
t[n_, m_, i_] = Product[Binomial[n + k, m + k]/Binomial[n - m + k, k], {k, 0, i}];
m = 2; a = Table[A[n, k, m - 1] - t[n - 1, k - 1, (2*m - 2)], {n, 4, 14}, { k, 2, n - 1}];
Flatten[a]
Comments