cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A120257 Triangle of Hankel transforms of certain binomial sums.

Original entry on oeis.org

1, 2, -1, 3, -6, -1, 4, -20, -20, 1, 5, -50, -175, 70, 1, 6, -105, -980, 1764, 252, -1, 7, -196, -4116, 24696, 19404, -924, -1, 8, -336, -14112, 232848, 731808, -226512, -3432, 1, 9, -540, -41580, 1646568, 16818516, -24293412, -2760615, 12870, 1, 10, -825, -108900, 9343620, 267227532, -1447482465
Offset: 0

Views

Author

Paul Barry, Jun 13 2006

Keywords

Comments

Row k is the Hankel transform of Sum_{j=0..n} binomial(k+j, j). Absolute value is reversal of A103905. Diagonal and subdiagonals are essentially signed versions of the central coefficients of certain generalized Pascal-Narayana triangles (A007318, A001263, A056939, A056940, A056941).

Examples

			Triangle begins
  1;
  2,   -1;
  3,   -6,     -1;
  4,  -20,    -20,      1;
  5,  -50,   -175,     70,      1;
  6, -105,   -980,   1764,    252,      -1;
  7, -196,  -4116,  24696,  19404,    -924,    -1;
  8, -336, -14112, 232848, 731808, -226512, -3432, 1;
		

Crossrefs

Cf. A120258.

Programs

  • PARI
    T(n, k) = (-1)^((k+1)\2) * prod(j=0, n-k-1, binomial(2*k+2+j, k+1)/binomial(k+1+j, j)); \\ Michel Marcus, Jan 13 2022

Formula

T(n, k) = (cos(Pi*k/2) - sin(Pi*k/2)) * Product_{j=0..n-k-1} C(2k+2+j, k+1)/C(k+1+j, j).

A142470 Triangle T(n, k) = ( (k+2)/(2*binomial(k+2, 2)^2) )*binomial(n, k)^2*binomial(n+1, k)*binomial(n+2, k), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 30, 30, 1, 1, 80, 300, 80, 1, 1, 175, 1750, 1750, 175, 1, 1, 336, 7350, 19600, 7350, 336, 1, 1, 588, 24696, 144060, 144060, 24696, 588, 1, 1, 960, 70560, 790272, 1728720, 790272, 70560, 960, 1, 1, 1485, 178200, 3492720, 14669424, 14669424, 3492720, 178200, 1485, 1
Offset: 0

Views

Author

Roger L. Bagula, Sep 20 2008

Keywords

Comments

Row sums are 1, 2, 10, 62, 462, 3852, 34974, 338690, 3452306, 36683660, 403472368, ...
From Peter Bala, May 08 2012: (Start)
Define the action of the operator L on a sequence { a(i) }{0<=i<=n} by L{ a(i) }{0<=i<=n} = { a(i)^2 - a(i-1)*a(i+1) }_{0<=i<=n} with the conventions a(-1) = a(n+1) = 0. Extend the action of L to a lower triangular array T by letting L act on the rows of T. Then L acting on Pascal's triangle A007318 produces the triangle of Narayana numbers A001263 and L applied to A001263 produces the present triangle.
Since the Narayana polynomials are real-rooted it follows by a theorem of Branden that the row polynomials of this array are also real-rooted.
(End)

Examples

			The triangle begins as:
  1;
  1,    1;
  1,    8,      1;
  1,   30,     30,       1;
  1,   80,    300,      80,        1;
  1,  175,   1750,    1750,      175,        1;
  1,  336,   7350,   19600,     7350,      336,       1;
  1,  588,  24696,  144060,   144060,    24696,     588,      1;
  1,  960,  70560,  790272,  1728720,   790272,   70560,    960,    1;
  1, 1485, 178200, 3492720, 14669424, 14669424, 3492720, 178200, 1485, 1;
		

Crossrefs

Programs

  • Magma
    A142470:= func< n,k | ( (k+2)/(2*Binomial(k+2, 2)^2) )*Binomial(n, k)^2*Binomial(n+1, k)*Binomial(n+2, k) >;
    [A142470(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 03 2021
    
  • Mathematica
    f[n_, k_]:= f[n, k]= Binomial[n, k]*Product[j!*(n+j)!/((k+j)!*(n-k+j)!), {j,1,2}];
    T[n_, k_]:= Binomial[n, k]*f[n, k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 03 2021 *)
  • Sage
    def A142470(n, k): return (2/((k+1)^2*(k+2)))*Binomial(n, k)^2*Binomial(n+1, k)*Binomial(n+2, k)
    flatten([[A142470(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 03 2021

Formula

Let f(n, k) = binomial(n, k)*Product_{j=1.2} ( j!*(n+j)!/((k+j)!*(n-k+j)!) ), then T(n, k) = 2^(k-n)*f(n, k)*Sum_{j=k..n} binomial(n, j)*binomial(j, k) = binomial(n, k)*f(n, k).
From Peter Bala, May 08 2012: (Start)
T(n, k) = C(n, k)^2 * Product {i=1..2} i!*(n+i)!/((k+i)!*(n-k+i)!) = C(n, k)*C(n+2, k)*C(n+2, k+1)*C(n+2, k+2)/(C(n+2, 1)*C(n+2, 2)).
T(n, k) = 2/((n+1)*(n+2)*(n+3))*C(n, k)*C(n+1, k)*C(n+2, k+2)*C(n+3, k+1) = C(n, k)*A056939(n, k).
(End)
T(n, k) = ( (k+2)/(2*binomial(k+2, 2)^2) )*binomial(n, k)^2*binomial(n+1, k)*binomial(n+2, k). - G. C. Greubel, Apr 03 2021

Extensions

Edited by G. C. Greubel, Apr 03 2021

A173882 Triangle T(n, k) = A090443(n-1)/(A090443(k-1)*A090443(n-k-1)) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 24, 24, 1, 1, 60, 240, 60, 1, 1, 120, 1200, 1200, 120, 1, 1, 210, 4200, 10500, 4200, 210, 1, 1, 336, 11760, 58800, 58800, 11760, 336, 1, 1, 504, 28224, 246960, 493920, 246960, 28224, 504, 1, 1, 720, 60480, 846720, 2963520, 2963520, 846720, 60480, 720, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 01 2010

Keywords

Comments

A090443 is defined as +1 at negative indices here, which keeps the definition valid in the range 0 <= k <= n.
Row sums are 1, 2, 8, 50, 362, 2642, 19322, 141794, 1045298, 7742882, ....

Examples

			Triangle begins as:
  1;
  1,   1;
  1,   6,      1;
  1,  24,     24,       1;
  1,  60,    240,      60,        1;
  1, 120,   1200,    1200,      120,        1;
  1, 210,   4200,   10500,     4200,      210,        1;
  1, 336,  11760,   58800,    58800,    11760,      336,       1;
  1, 504,  28224,  246960,   493920,   246960,    28224,     504,      1;
  1, 720,  60480,  846720,  2963520,  2963520,   846720,   60480,    720,   1;
  1, 990, 118800, 2494800, 13970880, 24449040, 13970880, 2494800, 118800, 990, 1;
  ...
		

Crossrefs

Cf. A056939.

Programs

  • Magma
    T:= func< n,k | k eq 0 or k eq n select 1 else 2*Binomial(n-1,k-1)*Binomial(n,k)*Binomial(n+1,k+1)*(n-k)/(n-k+1) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 17 2021
    
  • Maple
    A090443 := proc(n) (n+2)!*(n+1)!*n!/2 ; end proc:
    A173882 := proc(n,m) if m=0 or m= n then 1; else A090443(n-1)/A090443(m-1)/A090443(n-m-1) ; end if; end proc:
    seq(seq(A173882(n,m),m=0..n),n=0..5) ; # R. J. Mathar, Mar 19 2011
  • Mathematica
    T[n_,k_]:= If[k==0||k==n, 1, 2*Binomial[n-1,k-1]*Binomial[n,k]*Binomial[n+1,k+1]*(n-k)/(n-k+1)];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 17 2021 *)
  • Sage
    def T(n,k): return 1 if (k==0 or k==n) else 2*binomial(n-1,k-1)*binomial(n,k)*binomial(n+1,k+1)*(n-k)/(n-k+1)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 17 2021

Formula

T(n, k) = 2*binomial(n-1,k-1)*binomial(n,k)*binomial(n+1,k+1)*(n-k)/(n-k+1) with T(n, 0) = T(n, n) = 1.
T(n, k) = c(n)/(c(k)*c(n-k)) where c(n) = Product_{j=2..n} (j-1)*j*(j+1) = (n-1)!*n!*(n+1)!/2 and c(0) = c(1) = 1.

A095265 A sequence generated from a 4th degree Pascal's Triangle polynomial.

Original entry on oeis.org

1, 22, 103, 284, 605, 1106, 1827, 2808, 4089, 5710, 7711, 10132, 13013, 16394, 20315, 24816, 29937, 35718, 42199, 49420, 57421, 66242, 75923, 86504, 98025, 110526, 124047, 138628, 154309, 171130, 189131, 208352, 228833, 250614, 273735, 298236
Offset: 1

Views

Author

Gary W. Adamson, May 31 2004

Keywords

Comments

The characteristic polynomial of M = x^4 - 4x^3 + 6x^2 - 4x + 1. (the recursive multipliers are seen in the polynomial with changed signs: (4), (-6), (4), (-1).

Examples

			a(13) = 13013 = 4*a(12) - 6*a(11) + 4*a(10) - a(9) = 4*10132 - 6*7711 + 4*5710 - 4089.
a(6) = 1106 since M^6 * [1 0 0 0] = [ 1 6 66 1106].
a(6) = 1106 = f(n) = (20/3)(6)^3 -10*(6^2) +(13/3)*6 = 1440 - 360 + 26.
		

Crossrefs

Programs

  • Maple
    a:= n-> (20*n^2-30*n+13)*n/3:
    seq(a(n), n=1..50);  # Alois P. Heinz, May 25 2013
  • Mathematica
    a[n_] := (MatrixPower[{{1, 0, 0, 0}, {1, 1, 0, 0}, {1, 4, 1, 0}, {1, 10, 10, 1}}, n].{{1}, {0}, {0}, {0}})[[4, 1]]; Table[ a[n], {n, 36}] (* Robert G. Wilson v, Jun 05 2004 *)

Formula

a(n+4) = 4*a(n+3) - 6*a(n+2) + 4*a(n+1) - a(n), (multipliers which are present with changed signs in the characteristic polynomial, x^4 - 4x^3 + 6x^2 - 4x + 1. Given the 4 X 4 matrix derived from an A056939 triangle (fill in with zeros): M = [1 0 0 0 / 1 1 0 0 / 1 4 1 0 / 1 10 10 1], then M^n * [1 0 0 0] = [1 n A000384(n) a(n)] where A000384 is the hexagonal series 1, 6, 15, 28... 3. a(n) = (20/3)n^3 - 10n^2 + (13/3)n.
G.f.: x*(21*x^2+18*x+1) / (x-1)^4. - Colin Barker, May 25 2013

Extensions

Edited and corrected by Robert G. Wilson v, Jun 05 2004

A155834 A triangle sequence of general recursive Sierpinski-Pascal minus general Narayana with adjusted n,m levels and zeros out:k=2; t(n,m)=Pascal(n,m,k-1)-Narayana(n-1,m-1,2*(k-1)).

Original entry on oeis.org

1, 1, 6, 16, 6, 22, 127, 127, 22, 64, 701, 1436, 701, 64, 163, 3117, 11503, 11503, 3117, 163, 382, 12088, 74122, 131494, 74122, 12088, 382, 848, 42890, 413612, 1193930, 1193930, 413612, 42890, 848, 1816, 143562, 2094588, 9280734, 14992440, 9280734
Offset: 4

Views

Author

Roger L. Bagula, Jan 28 2009

Keywords

Comments

Row sums are;
2, 28, 298, 2966, 29566, 304678, 3302560, 38033840, 467861040, 6159690808,
86763791762,...
This level is the Eulerian number level:
only the odd Narayana levels correspond to the recursive Sierpinski-Pascal levels.

Examples

			{1, 1},
{6, 16, 6},
{22, 127, 127, 22},
{64, 701, 1436, 701, 64},
{163, 3117, 11503, 11503, 3117, 163},
{382, 12088, 74122, 131494, 74122, 12088, 382},
{848, 42890, 413612, 1193930, 1193930, 413612, 42890, 848},
{1816, 143562, 2094588, 9280734, 14992440, 9280734, 2094588, 143562, 1816},
{3797, 462541, 9928140, 64761204, 158774838, 158774838, 64761204, 9928140, 462541, 3797},
{7814, 1453700, 44960878, 418557816, 1489425900, 2250878592, 1489425900, 418557816, 44960878, 1453700, 7814},
{15914, 4495909, 197226603, 2558716162, 12781854516, 27839586777, 27839586777, 12781854516, 2558716162, 197226603, 4495909, 15914}
		

Crossrefs

Programs

  • Mathematica
    Clear[A, a0, b0, n, k, m, t, i];
    A[n_, 1, m_] := 1; A[n_, n_, m_] := 1;
    A[n_, k_, m_] := (m*n - m*k + 1)*A[n - 1, k - 1, m] + (m*k - (m - 1))*A[n - 1, k, m];
    t[n_, m_, i_] = Product[Binomial[n + k, m + k]/Binomial[n - m + k, k], {k, 0, i}];
    m = 2; a = Table[A[n, k, m - 1] - t[n - 1, k - 1, (2*m - 2)], {n, 4, 14}, { k, 2, n - 1}];
    Flatten[a]

Formula

Pascal(n,m,k):
a(n,k,m)=(m*n - m*k + 1)*a(n - 1, k - 1, m) + (m*k - (m - 1))*a(n - 1, k, m);
Narayana(n,m,k):
y(n,m,k)=Product[Binomial[n + k, m + k]/Binomial[n - m + k, k], {k, 0, i}];
k=2;
t(n,m)=Pascal(n,m,k-1)-Narayana(n-1,m-1,2*(k-1)).
Previous Showing 21-25 of 25 results.