cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A316481 Squares whose arithmetic mean of digits is 1 (i.e., the sum of digits equals the number of digits).

Original entry on oeis.org

1, 1100401, 2220100, 100040004, 100100025, 100220121, 100400400, 101002500, 102030201, 102212100, 103002201, 104040000, 110250000, 121022001, 121220100, 123210000, 132020100, 144000000, 210221001, 225000000, 310112100, 324000000, 400040001, 400400100
Offset: 1

Views

Author

Jon E. Schoenfield, Jul 04 2018

Keywords

Comments

Each term's number of digits is in A056991 (Numbers with digital root 1, 4, 7, or 9). For every term k in A056991, this sequence contains at least one k-digit term, with the exception of k=4. (See A316480.)

Examples

			1049^2 = 1100401, a 7-digit number whose digit sum is 1+1+0+0+4+0+1 = 7, so 1100401 is a term.
		

Crossrefs

Intersection of A000290 and A061384. - Michel Marcus, Jul 06 2018

A316484 Squares whose arithmetic mean of digits is 4 (i.e., the sum of digits is 4 times the number of digits).

Original entry on oeis.org

4, 1681, 3364, 3481, 4624, 7225, 9025, 1054729, 1069156, 1073296, 1149184, 1168561, 1183744, 1227664, 1263376, 1288225, 1308736, 1329409, 1366561, 1517824, 1522756, 1545049, 1567504, 1585081, 1607824, 1630729, 1635841, 1677025, 1682209, 1705636, 1729225
Offset: 1

Views

Author

Jon E. Schoenfield, Jul 04 2018

Keywords

Comments

Each term's number of digits is in A056991 (Numbers with digital root 1, 4, 7, or 9). For every term k in A056991, this sequence contains at least one k-digit term. (See A316480.)

Examples

			1027^2 + 1054729, a 7-digit number whose digit sum is 1+0+5+4+7+2+9 = 28 = 4*7, so 1054729 is a term.
10044^2 = 100881936, a 9-digit number whose digit sum is 1+0+0+8+8+1+9+3+6 = 36 = 4*9, so 100881936 is a term.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local L;
      L:= convert(n^2,base,10);
      if convert(L,`+`)=4*nops(L) then n^2 fi
    end proc:
    map(f, [$1..2000]); # Robert Israel, Jul 05 2018
  • Mathematica
    Select[Range[1500]^2, Mean[IntegerDigits[#]] == 4 &] (* Giovanni Resta, Jul 05 2018 *)
  • PARI
    isok(n) = (n>0) && issquare(n) && (sumdigits(n) == 4*#digits(n)); \\ Michel Marcus, Jul 05 2018

A061099 Squares with digital root 1.

Original entry on oeis.org

1, 64, 100, 289, 361, 676, 784, 1225, 1369, 1936, 2116, 2809, 3025, 3844, 4096, 5041, 5329, 6400, 6724, 7921, 8281, 9604, 10000, 11449, 11881, 13456, 13924, 15625, 16129, 17956, 18496, 20449, 21025, 23104, 23716, 25921, 26569, 28900, 29584
Offset: 1

Views

Author

Amarnath Murthy, Apr 19 2001

Keywords

Examples

			289 = 17^2, 2+8+9 = 19, 1+9 = 1, 1369 = 37^2, 1+3+6+9 = 19, 1+9 = 1.
		

Crossrefs

Squares of A056020.
Cf. A056991.

Programs

Formula

From Colin Barker, Apr 21 2012: (Start)
a(n) = (9*n+2)^2/4 for n even; a(n)=(9*n+7)^2/4 for n odd.
G.f.: x*(1+63*x+34*x^2+63*x^3+x^4)/((1-x)^3*(1+x)^2). (End)
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5). - Wesley Ivan Hurt, Apr 21 2021

Extensions

More terms from Harry J. Smith, Jul 17 2009

A061100 Squares with digital root 4.

Original entry on oeis.org

4, 49, 121, 256, 400, 625, 841, 1156, 1444, 1849, 2209, 2704, 3136, 3721, 4225, 4900, 5476, 6241, 6889, 7744, 8464, 9409, 10201, 11236, 12100, 13225, 14161, 15376, 16384, 17689, 18769, 20164, 21316, 22801, 24025, 25600, 26896, 28561, 29929
Offset: 1

Views

Author

Amarnath Murthy, Apr 19 2001

Keywords

Examples

			256 = 16^2, 2 + 5 + 6 = 13, 1 + 3 = 4;
1849 = 43^2, 1 + 8 + 4 + 9 = 22, 2 + 2 = 4.
		

Crossrefs

Cf. A056991.

Programs

  • Maple
    seq(seq((a+9*k)^2,a=[2,7]),k=0..20); # Robert Israel, Jun 13 2018
  • Mathematica
    fdsQ[n_]:=NestWhile[Total[IntegerDigits[#]]&,n,#>9&]==4; Select[Range[ 200]^2,fdsQ] (* Harvey P. Dale, Dec 15 2011 *)
  • PARI
    a(n)=(n\2*9-2*(-1)^n)^2 \\ Charles R Greathouse IV, Sep 21 2012

Formula

From Colin Barker, Feb 18 2013: (Start)
Conjecture:
a(n) = (16-72*n+81*n^2)/4 for n even;
a(n)=(25-90*n+81*n^2)/4 for n odd;
g.f.: -x*(4*x^4+45*x^3+64*x^2+45*x+4) / ((x-1)^3*(x+1)^2). (End)
Conjecture is true since x^2 == 4 (mod 9) if and only if x == 2 or 7 (mod 9). The odd-numbered terms are (2+9*k)^2 and the even-numbered terms are (7+9*k)^2. - Robert Israel, Jun 13 2018

Extensions

More terms from Harry J. Smith, Jul 18 2009

A061101 Squares with digital root 7.

Original entry on oeis.org

16, 25, 169, 196, 484, 529, 961, 1024, 1600, 1681, 2401, 2500, 3364, 3481, 4489, 4624, 5776, 5929, 7225, 7396, 8836, 9025, 10609, 10816, 12544, 12769, 14641, 14884, 16900, 17161, 19321, 19600, 21904, 22201, 24649, 24964, 27556, 27889, 30625
Offset: 1

Views

Author

Amarnath Murthy, Apr 19 2001

Keywords

Examples

			1681=41^2, 1+6+8+1 = 16, 1+6 =7, 4624=68^2, 4+6+2+4 = 16, 1+6 =7.
		

Crossrefs

Cf. A056991.

Programs

Formula

Conjecture: a(n)=(9*n-8)^2/4 for n even. a(n)=(9*n-1)^2/4 for n odd. G.f.: x*(16+9*x+112*x^2+9*x^3+16*x^4)/((1-x)^3*(1+x)^2). - Colin Barker, Apr 21 2012
Conjecture is true, because x^2 == 7 (mod 9) if and only if x == 4 or 5 (mod 9). - Robert Israel, Jan 31 2017

Extensions

More terms from Harry J. Smith, Jul 18 2009

A234429 Numbers which are the digital sum of the square of some prime.

Original entry on oeis.org

4, 7, 9, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178
Offset: 1

Views

Author

Keywords

Comments

A123157 sorted and duplicates removed.

Crossrefs

Programs

  • PARI
    terms(nn) = {v = []; forprime (p = 1, nn, v = concat(v, sumdigits(p^2));); vecsort(v,,8);} \\ Michel Marcus, Jan 08 2014

Formula

From Robert G. Wilson v, Sep 28 2014: (Start)
Except for 3, all primes are congruent to +-1 (mod 3). Therefore, (3n +- 1)^2 = 9n^2 +- 6n + 1 which is congruent to 1 (mod 3).
4: 2, 11, 101, ... (A062397);
7: 5, 149, 1049, ... (A226803);
9: only 3;
10: 19, 71, 179, 251, 449, 20249, 24499, 100549, ... (A226802);
13: 7, 29, 47, 61, 79, 151, 349, 389, 461, 601, 1051, 1249, 1429, ... (A165492);
16: 13, 23, 31, 41, 59, 103, 131, 139, 211, 229, 239, 347, 401, ... (A165459);
19: 17, 37, 53, 73, 89, 107, 109, 127, 181, 199, 269, 271, 379, ... (A165493);
22: 43, 97, 191, 227, 241, 317, 331, 353, 421, 439, 479, 569, 619, 641, ...;
25: 67, 113, 157, 193, 257, 283, 311, 337, 373, 409, 419, 463, ... (A229058);
28: 163, 197, 233, 307, 359, 397, 431, 467, 487, 523, 541, 577, 593, 631, ...;
31: 83, 137, 173, 223, 263, 277, 281, 367, 443, 457, 547, 587, ... (A165502);
34: 167, 293, 383, 563, 607, 617, 733, 787, 823, 859, 877, 941, 967, 977, ...;
37: 433, 613, 683, 773, 827, 863, 1063, 1117, 1187, 1223, 1567, ... (A165503);
40: 313, 947, 983, 1303, 1483, 1609, 1663, 1933, 1973, 1987, 2063, 2113, ...;
43: 887, 1697, 1723, 1867, 1913, 2083, 2137, 2417, 2543, 2633, ... (A165504);
46: 883, 937, 1367, 1637, 2213, 2447, 2683, 2791, 2917, 3313, 3583, 3833, ...;
49: 1667, 2383, 2437, 2617, 2963, 4219, 4457, 5087, 5281, 6113, 6163, ...;
... Also see A229058. (End)
Conjectures from Chai Wah Wu, Apr 16 2025: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 5.
G.f.: x*(2*x^4 - x^3 - x^2 - x + 4)/(x - 1)^2. (End)

Extensions

a(36) from Michel Marcus, Jan 08 2014
a(37)-a(54) from Robert G. Wilson v, Sep 28 2014
More terms from Giovanni Resta, Aug 15 2019

A244713 Positive numbers primitively represented by the binary quadratic form (1, 1, -2).

Original entry on oeis.org

1, 4, 7, 10, 13, 16, 18, 19, 22, 25, 27, 28, 31, 34, 37, 40, 43, 45, 46, 49, 52, 54, 55, 58, 61, 64, 67, 70, 72, 73, 76, 79, 81, 82, 85, 88, 91, 94, 97, 99, 100, 103, 106, 108, 109, 112, 115, 118, 121, 124, 126, 127, 130, 133, 135, 136, 139, 142, 145, 148, 151
Offset: 1

Views

Author

Peter Luschny, Jul 04 2014

Keywords

Comments

Discriminant = 9.

Crossrefs

Cf. A002476, A007645. A subsequence of A056991 and A242660.

Programs

  • Mathematica
    Reap[For[n = 1, n < 1000, n++, r = Reduce[x^2 + x y - 2 y^2 == n, {x, y}, Integers]; If[r =!= False, If[AnyTrue[{x, y} /. {ToRules[r /. C[1] -> 0]}, CoprimeQ @@ # &], Sow[n]]]]][[2, 1]] (* Jean-François Alcover, Oct 31 2016 *)

Formula

Conjectures from Colin Barker, Oct 31 2016: (Start)
a(n) = a(n-1)+a(n-11)-a(n-12) for n>12.
G.f.: (1 +2*x)*(1 +x +x^2)*(1 +x^3 +x^7) / ((1 -x)^2*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 +x^10)).
(End)

A316487 Squares whose arithmetic mean of digits is 7 (i.e., the sum of digits is 7 times the number of digits).

Original entry on oeis.org

2778889, 4695889, 5678689, 5697769, 5938969, 6568969, 6589489, 6848689, 6895876, 7974976, 7997584, 8779369, 9878449, 9966649, 299739969, 377796969, 396686889, 458687889, 467986689, 487658889, 488984769, 496977849, 538889796, 557998884, 559984896, 569967876
Offset: 1

Views

Author

Jon E. Schoenfield, Jul 04 2018

Keywords

Comments

Each term's number of digits is in A056991 (Numbers with digital root 1, 4, 7, or 9). For every term k in A056991, this sequence contains at least one k-digit term, with the exception of k=1 and k=4. (See A316480.)

Examples

			17313^2 = 299739969, a 9-digit number whose digit sum is 2+9+9+7+3+9+9+6+9 = 63 = 7*9, so 299739969 is a term.
43474^2 = 1889988676, a 10-digit number whose digit sum is 1+8+8+9+9+8+8+6+7+6 = 70 = 7*10, so 1889988676 is a term.
		

Crossrefs

Intersection of A000290 and A061424. - Michel Marcus, Jul 06 2018

A358702 a(n) is the least k > 0 such that the sum of the decimal digits of k^2 is n, or 0 if no such k exists.

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 4, 0, 3, 8, 0, 0, 7, 0, 0, 13, 0, 24, 17, 0, 0, 43, 0, 0, 67, 0, 63, 134, 0, 0, 83, 0, 0, 167, 0, 264, 314, 0, 0, 313, 0, 0, 707, 0, 1374, 836, 0, 0, 1667, 0, 0, 2236, 0, 3114, 4472, 0, 0, 6833, 0, 0, 8167, 0, 8937, 16667, 0, 0, 21886, 0, 0, 29614
Offset: 1

Views

Author

Hugo Pfoertner, Dec 04 2022

Keywords

Crossrefs

The nonzero terms are A067179.
Cf. A056991, A231897 (similar for binary weight).

A375166 Nonsquares congruent to {0, 1, 4, 7} modulo 9.

Original entry on oeis.org

7, 10, 13, 18, 19, 22, 27, 28, 31, 34, 37, 40, 43, 45, 46, 52, 54, 55, 58, 61, 63, 67, 70, 72, 73, 76, 79, 82, 85, 88, 90, 91, 94, 97, 99, 103, 106, 108, 109, 112, 115, 117, 118, 124, 126, 127, 130, 133, 135, 136, 139, 142, 145, 148, 151, 153, 154, 157, 160, 162
Offset: 1

Views

Author

Stefano Spezia, Aug 05 2024

Keywords

Comments

Squares are congruent to {0, 1, 4, 7} modulo 9, but the reverse is not always true since there are nonsquares that have the same congruence property. See Beiler.

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 140.

Crossrefs

Intersection of A000037 and A056991.

Programs

  • Mathematica
    Select[Range[0,162], !IntegerQ[Sqrt[#]] && MemberQ[{0,1,4,7}, Mod[#,9]] &]
  • Python
    from itertools import count, islice
    from sympy.ntheory.primetest import is_square
    def A375166_gen(): # generator of terms
        for i in count(0,9):
            for j in (0,1,4,7):
                if not is_square(i+j): yield i+j
    A375166_list = list(islice(A375166_gen(),40)) # Chai Wah Wu, Jun 05 2025
Previous Showing 11-20 of 20 results.