cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A322668 Numbers k such that (k, k+2) are not twin primes yet sigma(k+2)/d(k+2) - sigma(k)/d(k) = 1.

Original entry on oeis.org

1, 350, 6497, 12317, 133787, 181427, 404471, 439097, 485237, 501182, 549378, 1410119, 2696807, 6220607, 6827369, 6954767, 9770027, 10302419, 10449347, 10887977, 11014007, 16745387, 18959111, 25883519, 27334469, 39508037, 40311149, 40551617, 42561437, 44592209
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

A variation of A050507 with average of the divisors instead of their sum.

Crossrefs

Cf. A000005 (number of divisors), A000203 (sum of divisors).

Programs

  • Mathematica
    f[n_] := DivisorSigma[1, n]/DivisorSigma[0, n]; aQ[n_] := f[n + 2] - f[n] ==  1 && !(PrimeQ[n] && PrimeQ[n + 2]); Select[Range[1000000], aQ]
  • PARI
    isok(k) = !(isprime(k) && isprime(k+2)) && (sigma(k+2)/numdiv(k+2) - sigma(k)/numdiv(k) == 1); \\ Michel Marcus, Jan 22 2019

A348713 Numbers whose divisors can be partitioned into two disjoint sets with equal arithmetic mean.

Original entry on oeis.org

6, 20, 24, 30, 42, 48, 54, 56, 60, 66, 70, 72, 78, 84, 88, 90, 96, 102, 108, 114, 120, 126, 132, 135, 138, 140, 150, 156, 160, 168, 174, 180, 186, 190, 192, 196, 198, 200, 204, 210, 216, 220, 222, 224, 228, 230, 234, 240, 246, 252, 258, 260, 264, 270, 273, 276
Offset: 1

Views

Author

Amiram Eldar, Oct 31 2021

Keywords

Comments

The arithmetic mean of each of the two subsets is equal to the arithmetic mean of all the divisors of the number.
Also, numbers whose divisors can be partitioned into two disjoint sets with equal harmonic mean. This definition is equivalent since the harmonic mean of a subset {d_i} of the divisors of k is equal to k/, where is the arithmetic mean over the complementary divisors k/d_i.

Examples

			6 is a term since its set of divisors, {1, 2, 3, 6}, can be partitioned into the two disjoint sets, {3} and {1, 2, 6}, whose arithmetic means are both 3.
		

Crossrefs

A347063 is a subsequence.

Programs

  • Mathematica
    q[n_] := Module[{d = Divisors[n], nd, m, s, subs, ans = False}, nd = Length[d]; m = Plus @@ d/nd; subs = Subsets[d]; Do[s = subs[[k]]; If[0 < Length[s] < nd && Mean[s] == m, ans = True; Break[]], {k, 1, Length[subs]}]; ans]; Select[Range[300], q]

A348718 Numbers whose divisors can be partitioned into two disjoint sets without singletons whose arithmetic means are both integers.

Original entry on oeis.org

6, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96
Offset: 1

Views

Author

Amiram Eldar, Oct 31 2021

Keywords

Comments

First differs from A343311 at n = 29.
Differs from A080257 which contains for example 8 and 128. - R. J. Mathar, Nov 03 2021

Examples

			6 is a term since its set of divisors, {1, 2, 3, 6}, can be partitioned into the two disjoint sets {1, 3} and {2, 6} whose arithmetic means, 2 and 4 respectively, are both integers.
		

Crossrefs

Programs

  • Mathematica
    amQ[d_] := IntegerQ @ Mean[d]; q[n_] := Module[{d = Divisors[n], nd, s, subs, ans = False}, nd = Length[d]; subs = Subsets[d]; Do[s = subs[[k]]; If[Length[s] > 1 && Length[s] <= nd/2 && amQ[s] && amQ[Complement[d, s]], ans = True; Break[]], {k, 1, Length[subs]}]; ans]; Select[Range[100], q]

A069082 Numbers n such that sigma(n)/tau(n) has denominator 3.

Original entry on oeis.org

4, 9, 12, 25, 28, 52, 63, 75, 76, 84, 108, 117, 121, 124, 148, 156, 171, 172, 175, 180, 196, 228, 243, 244, 268, 279, 289, 292, 316, 325, 333, 363, 364, 372, 387, 388, 396, 412, 436, 441, 444, 475, 508, 516, 525, 529, 532, 549, 556, 588, 603, 604, 628, 652
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

Numbers such that the denominator of the fraction (sum of the divisors of n) divided by (the number of divisors of n) equals 3. - Harvey P. Dale, Jul 13 2012

Crossrefs

Programs

  • Magma
    [n:n in [1..700]|Denominator(SumOfDivisors(n)/#Divisors(n)) eq 3]; // Marius A. Burtea, Sep 08 2019
  • Mathematica
    Select[Range[700],Denominator[DivisorSigma[1,#]/DivisorSigma[0,#]] == 3&] (* Harvey P. Dale, Jul 13 2012 *)

Formula

n such that A057021(n)=3.

A069083 Numbers n such that sigma(n)/tau(n) has denominator 4.

Original entry on oeis.org

8, 40, 72, 104, 136, 200, 232, 296, 328, 360, 384, 392, 424, 488, 520, 584, 648, 680, 712, 776, 808, 872, 904, 936, 968, 1000, 1096, 1160, 1192, 1224, 1256, 1352, 1384, 1408, 1448, 1480, 1544, 1576, 1640, 1768, 1832, 1864, 1920, 1928, 1960, 2048, 2056
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Crossrefs

Programs

  • Magma
    [n:n in [1..2100]|Denominator(SumOfDivisors(n)/#Divisors(n)) eq 4]; // Marius A. Burtea, Sep 08 2019
  • Mathematica
    Select[Range[500], Denominator[DivisorSigma[1, #]/DivisorSigma[0, #]] == 4 &] (* Amiram Eldar, Sep 08 2019 *)

Formula

n such that A057021(n)=4.

A069084 Numbers n such that sigma(n)/tau(n) has denominator 5.

Original entry on oeis.org

16, 48, 80, 81, 112, 176, 208, 240, 272, 336, 368, 405, 496, 528, 560, 567, 592, 624, 625, 656, 688, 720, 752, 784, 816, 848, 880, 891, 976, 1040, 1053, 1072, 1104, 1134, 1136, 1168, 1232, 1328, 1360, 1377, 1456, 1488, 1536, 1552, 1584, 1616, 1620, 1648
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Crossrefs

Programs

  • Magma
    [n:n in [1..1700]|Denominator(SumOfDivisors(n)/#Divisors(n)) eq 5]; // Marius A. Burtea, Sep 08 2019
  • Mathematica
    Select[Range[500], Denominator[DivisorSigma[1, #]/DivisorSigma[0, #]] == 5 &] (* Amiram Eldar, Sep 08 2019 *)

Formula

n such that A057021(n)=5

A308051 Decimal expansion of lim_{m->oo} (sqrt(log(m))/m^2) Sum_{k=1..m} sigma(k)/d(k), where d(k) is the number of divisors of k (A000005) and sigma(k) is their sum (A000203).

Original entry on oeis.org

3, 5, 6, 9, 0, 4, 9, 6, 5, 2, 4, 9, 9, 5, 7, 0, 7, 6, 1, 2, 2, 0, 0, 5, 3, 0, 2, 0, 1, 3, 9, 9, 6, 4, 5, 9, 1, 3, 6, 0, 6, 6, 6, 8, 2, 6, 2, 5, 7, 3, 8, 4, 4, 2, 9, 6, 8, 7, 8, 8, 0, 2, 0, 1, 2, 7, 7, 4, 3, 4, 4, 2, 1, 4, 1, 8, 7, 2, 1, 3, 8, 5, 5, 3, 2, 1, 5
Offset: 0

Views

Author

Amiram Eldar, May 10 2019

Keywords

Examples

			0.35690496524995707612200530201399645913606668262573...
		

References

  • V. I. Arnold, Dynamics, Statistics, and Projective Geometry of Galois Fields, Cambridge University Press, Cambridge, 2011, p. 78.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; f[x_] := Log[1 + x]/x/Sqrt[1 - x]; c = Rest[CoefficientList[Series[Log[f[x]], {x, 0, m}], x]]; RealDigits[(1/2/ Sqrt[Pi])*Exp[NSum[Indexed[c, k]*PrimeZetaP[k], {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals (1/(2*sqrt(Pi))) * Product_{p prime} p^(3/2) * log(1 + 1/p) / sqrt(p-1).

A375080 a(n) is the numerator of ( Sum_{d|n} (n - d) )/tau(n).

Original entry on oeis.org

0, 1, 1, 5, 2, 3, 3, 17, 14, 11, 5, 22, 6, 8, 9, 49, 8, 23, 9, 13, 13, 13, 11, 33, 44, 31, 17, 56, 14, 21, 15, 43, 21, 41, 23, 233, 18, 23, 25, 115, 20, 30, 21, 30, 32, 28, 23, 178, 30, 69, 33, 107, 26, 39, 37, 41, 37, 71, 29, 46, 30, 38, 137, 321, 44, 48, 33, 47, 45, 52
Offset: 1

Views

Author

Stefano Spezia, Jul 29 2024

Keywords

Comments

( Sum_{d|n} (n - d) )/tau(n) is the average distance between n and its divisor.

Crossrefs

Cf. A000005, A000203, A057020, A057021 (denominator).

Programs

  • Mathematica
    a[n_]:=Numerator[n-DivisorSigma[1,n]/DivisorSigma[0,n]];  Array[a,70]
  • Python
    from math import prod
    from fractions import Fraction
    from sympy import factorint
    def A375080(n):
        f = factorint(n).items()
        return (n-Fraction(prod((p**(e+1)-1)//(p-1) for p, e in f),prod(e+1 for p,e in f))).numerator # Chai Wah Wu, Jul 30 2024

Formula

a(n) = numerator((n - sigma(n))/tau(n)).
a(n) = numerator(n - A000203(n)/A000005(n)).
a(n) = numerator(n - A057020(n)/A057021(n)).

A346644 Least k >= 1 such that sigma(k)/tau(k) has denominator n or zero if no k exists.

Original entry on oeis.org

1, 2, 4, 8, 16, 450, 64, 128, 36, 162, 1024, 1800, 4096, 1458, 144, 32768, 65536, 54450, 262144, 405000, 576, 118098, 4194304, 28800, 1296, 1062882, 900, 5832, 268435456, 115200, 1073741824, 2147483648, 9216, 86093442, 5184, 217800, 68719476736, 774840978, 102400
Offset: 1

Views

Author

Benoit Cloitre, Jul 26 2021

Keywords

Comments

Conjecture: k always exists.

Crossrefs

Programs

  • Mathematica
    seq[max_] := Module[{s = Table[0,{max}], c = 0, n = 1}, While[c < max, d = Denominator[DivisorSigma[1,n]/DivisorSigma[0,n]]; If[d <= max && s[[d]] == 0, c++; s[[d]] = n]; n++]; s]; seq[22] (* Amiram Eldar, Jul 26 2021 *)
  • PARI
    a(n)=if(n<0, 0, t=1; while(denominator(sigma(t)/numdiv(t))!=n, t++); t)

Extensions

a(29)-a(36) from Amiram Eldar, Jul 26 2021
a(37) from David A. Corneth, Jul 26 2021
a(38)-a(39) from Jinyuan Wang, Jul 26 2021

A347077 Numbers m such that sigma(m) / tau(m) = sigma(m - 1) / tau(m - 1) + sigma(m + 1) / tau(m + 1).

Original entry on oeis.org

15063, 18519, 49841, 137607, 179943, 203345, 412763, 421307, 517334, 881851, 1102204, 2003233, 2831435, 3869018, 17378593, 76645063, 107594182, 118012619, 190791881, 418588841, 447287713, 475734745, 632799289, 661709127, 664171759, 900701138, 998754443, 1756922665
Offset: 1

Views

Author

Jaroslav Krizek, Aug 15 2021

Keywords

Comments

Numbers m such that A057020(m) / A057021(m) = A057020(m - 1) / A057021(m - 1) + A057020(m + 1) / A057021(m + 1).
Corresponding values of fractions sigma(m) / tau(m): 5022, 6174, 7128, 45870, 59982, 31008, 111132, 106680, 99636, 220948, 163044, 263160, 449712, 726864, 2278152, ...

Examples

			sigma(15063) / tau(15063) = sigma(15062) / tau(15062) + sigma(15064) / tau(15064); 20088 / 4 = 23976 / 8 + 32400 / 16; 5022 = 2997 + 2025.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A057020, A057021.

Programs

Extensions

a(16)-a(18) from Jon E. Schoenfield, Aug 15 2021
a(19)-a(28) from Amiram Eldar, Aug 16 2021
Previous Showing 11-20 of 20 results.