cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A229549 Numbers k such that k*(sum of digits of k) is a palindrome.

Original entry on oeis.org

0, 1, 2, 3, 11, 22, 42, 53, 56, 101, 111, 113, 121, 124, 182, 187, 202, 272, 353, 434, 515, 572, 616, 683, 739, 829, 888, 1001, 1111, 1357, 1507, 1508, 1624, 1717, 2002, 2074, 2852, 3049, 3146, 3185, 3326, 3342, 3687, 3747, 4058, 4066, 4391, 4719, 4724, 5038, 7579, 8569, 9391, 9471
Offset: 1

Views

Author

Derek Orr, Sep 26 2013

Keywords

Examples

			829*(8+2+9) = 15751 (palindrome), so 829 is a term of this sequence.
		

Crossrefs

Cf. A057147.

Programs

  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; Select[Range@ 10000, palQ[# Plus @@ IntegerDigits@ #] &] (* Michael De Vlieger, Apr 12 2015 *)
    Select[Range[0,10000],PalindromeQ[# Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Jun 30 2025 *)
  • PARI
    ispal(n)=d=digits(n);d==Vecrev(d)
    for(n=0,10^4,s=sumdigits(n);if(ispal(n*s),print1(n,", "))) \\ Derek Orr, Apr 10 2015
  • Python
    def ispal(n):
        r = ''
        for i in str(n):
            r = i + r
        return n == int(r)
    def DS(n):
        s = 0
        for i in str(n):
            s += int(i)
        return s
    {print(n, end=', ') for n in range(10**4) if ispal(n*DS(n))}
    ## Simplified by Derek Orr, Apr 10 2015
    

Extensions

More terms from Derek Orr, Apr 10 2015

A037478 Number of positive solutions to "numbers that are n times sum of their digits".

Original entry on oeis.org

9, 1, 1, 4, 1, 1, 4, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 11, 1, 1, 3, 1, 1, 3, 2, 2, 12, 1, 1, 3, 1, 1, 4, 1, 2, 15, 2, 1, 4, 1, 1, 3, 1, 1, 13, 2, 2, 3, 1, 1, 4, 1, 1, 13, 1, 1, 2, 1, 1, 3, 0, 0, 7, 0, 1, 4, 1, 1, 4, 1, 1, 8, 1, 0, 3, 1, 1, 4, 1, 1, 10, 1, 0, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 0, 1, 3, 1, 1, 9, 1
Offset: 1

Views

Author

Henry Bottomley, Sep 12 2000

Keywords

Comments

It appears that the largest terms occur when n=1 mod 9 and moderately large terms when n=4 or 7 mod 9.

Examples

			a(13)=3 since the only three solutions are 117=9*13, 156=12*13 and 195=15*13.
		

Crossrefs

Programs

  • Maple
    read("transforms"):
    A037478 := proc(n)
        local a,x,k;
        a := 0 ;
        for k from 1 do
            x := n*k ;
            if digsum(x)*n = x then
                a := a+1 ;
            end if;
            # may stop if x/digsum(x)>n, so if x/#digits(x) > 9*n
            if x/A055642(x) > 9*n then
                break;
            end if;
        end do:
        a ;
    end proc:
    seq(A037478(n),n=1..101) ; # R. J. Mathar, May 11 2016

A337816 Numbers that can be written as (m * sum of digits of m) for some m.

Original entry on oeis.org

0, 1, 4, 9, 10, 16, 22, 25, 36, 40, 49, 52, 63, 64, 70, 81, 88, 90, 100, 112, 115, 124, 136, 144, 160, 162, 175, 190, 198, 202, 205, 208, 220, 238, 243, 250, 252, 280, 301, 306, 319, 324, 333, 352, 360, 364, 370, 400, 405, 412, 418, 424, 427, 448, 460, 468, 484, 486, 490
Offset: 1

Views

Author

Bernard Schott, Sep 23 2020

Keywords

Comments

If 3 divides a(n), then 9 divides a(n).

Examples

			10 = 10 * (1+0);
22 = 11 * (1+1).
		

Crossrefs

Range of A057147 and of A117570.
Similar sequences: A176995 (m + sum of digits of m), A336826 (m * product of digits of m), A337718 (m + product of digits of m).
Cf. A337817.
Some subsequences: A011557, A052268, A093141.

Programs

  • Mathematica
    m = 500; Select[Union @ Table[k * Plus @@ IntegerDigits[k], {k, 0, m}], # <= m &] (* Amiram Eldar, Sep 23 2020 *)
  • PARI
    is(k)={if(k==0, return(1)); fordiv(k, d, if(d*sumdigits(d)==k, return(1))); 0} \\ Andrew Howroyd, Sep 23 2020

A117570 Numbers of the form k * (sum of digits of k) listed sorted with multiplicity.

Original entry on oeis.org

0, 1, 4, 9, 10, 16, 22, 25, 36, 36, 40, 49, 52, 63, 64, 70, 81, 88, 90, 90, 100, 112, 115, 124, 136, 144, 160, 160, 162, 175, 190, 198, 202, 205, 208, 220, 238, 243, 250, 252, 280, 280, 301, 306, 306, 319, 324, 333, 352, 360, 360, 364, 370, 400, 405, 412, 418, 424
Offset: 1

Views

Author

Ernesto Estrada (estrada66(AT)yahoo.com), Jan 02 2008

Keywords

Examples

			2008 is a term since 2008 = 251*(2+5+1).
		

Crossrefs

Sorted terms of A057147.
Terms without duplicates are given by A337816.

Programs

  • Mathematica
    With[{nn = 400}, TakeWhile[#, # <= nn &] &@ Union@ Array[# Total@ IntegerDigits[#] &, nn + 1, 0]] (* Michael De Vlieger, Apr 19 2018 *)

A338976 Primes p such that p*A007953(p)+1 is prime.

Original entry on oeis.org

2, 11, 13, 17, 19, 59, 71, 97, 107, 109, 149, 167, 181, 239, 271, 419, 431, 499, 509, 523, 547, 563, 613, 631, 691, 727, 811, 853, 859, 983, 1009, 1063, 1087, 1117, 1151, 1193, 1229, 1409, 1427, 1487, 1559, 1579, 1601, 1759, 1823, 1913, 1973, 2039, 2099, 2161, 2237, 2251, 2309, 2411, 2437, 2473
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Dec 18 2020

Keywords

Examples

			a(3) = 13 is a term because 13 and 13*(1+3)+1 = 53 are prime.
		

Crossrefs

Subsequence of A119449.

Programs

  • Maple
    select(t -> isprime(t) and isprime(t*convert(convert(t,base,10),`+`)+1), [$2..10^4]);
  • PARI
    isok(p) = isprime(p) && isprime(p*sumdigits(p)+1); \\ Michel Marcus, Dec 18 2020

A089227 Numbers k such that 1 + k*ds(k) is prime, where ds(k) is the sum of digits of k.

Original entry on oeis.org

1, 2, 4, 6, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 28, 33, 34, 35, 38, 44, 46, 48, 50, 51, 54, 56, 59, 64, 68, 70, 71, 78, 80, 82, 84, 88, 90, 91, 92, 93, 94, 97, 98, 99, 100, 102, 104, 105, 106, 107, 109, 112, 116, 118, 123, 128, 129, 130, 136, 138, 140, 144, 145
Offset: 1

Views

Author

Yalcin Aktar, Dec 10 2003

Keywords

Examples

			10 is in the sequence because A007953(10) = 1 and 1 + 10*1 = 11 is prime.
		

Crossrefs

Programs

  • Magma
    [k:k in [1..145] | IsPrime(1+k*(&+Intseq(k,10)))]; // Marius A. Burtea, Jun 21 2019
  • Maple
    ds:= n -> convert(convert(n,base,10),`+`):
    filter:= n -> isprime(1+n*ds(n)):
    select(filter, [$1..1000]); # Robert Israel, Jun 20 2019
  • Mathematica
    Do[k = Plus @@ IntegerDigits[n]; If[PrimeQ[n*k + 1], Print[n]], {n, 1, 100}] (* Ryan Propper *)
    Select[Range[150],PrimeQ[#*Total[IntegerDigits[#]]+1]&] (* Harvey P. Dale, May 25 2024 *)
  • PARI
    isok(k) = isprime(1+k*sumdigits(k)); \\ Michel Marcus, Jun 20 2019
    

Extensions

More terms from David Wasserman, Aug 31 2005

A213630 a(t_1 t_2...t_n) = (t_1 + t_2)*t_1 t_2 + ... + (t_n-1 + t_n)*t_n-1 t_n.

Original entry on oeis.org

1, 4, 9, 16, 25, 36, 49, 64, 81, 10, 22, 36, 52, 70, 90, 112, 136, 162, 190, 40, 63, 88, 115, 144, 175, 208, 243, 280, 319, 90, 124, 160, 198, 238, 280, 324, 370, 418, 468, 160, 205, 252, 301, 352, 405, 460, 517, 576, 637, 250, 306, 364, 424, 486, 550, 616
Offset: 1

Views

Author

Felipe Bottega Diniz, Jun 16 2012

Keywords

Comments

Differs from A057147 first at n=100.
a(n)/n = {1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 6, 7, 8, 9, 10, 11, 12, 13, 14, 7, 8, 9, 10, 11, 12, 13, 14, 15, 8, 9, 10, 11, 12, 13, 14, 15, ...}. - Alexander R. Povolotsky, Jun 19 2012

Examples

			a(123456) = (1+2)*12 + (3+4)*34 + (5+6)*56 = 890.
a(890) = (0+8)*08 + (9+0)*90 = 874.
a(15) = (1+5)*15 = 90.
a(7) = (0+7)*07 = 49.
		

Programs

  • Maple
    read("transforms"):
    A213630 := proc(n)
        local dgs,a,i ;
        if n < 10 then
            n^2;
        else
            dgs := convert(n,base,10) ;
            a := 0 ;
            for i from 2 to nops(dgs) do
                a := a+(op(i-1,dgs)+op(i,dgs))*digcat2(op(i,dgs),op(i-1,dgs)) ;
            end do:
            a;
        end if;
    end proc: # R. J. Mathar, Aug 10 2012
  • Mathematica
    num[n_] := Module[{d = IntegerDigits[n], d2}, If[OddQ[Length[d]], d = Prepend[d, 0]]; d2 = Partition[d, 2]; Sum[(d2[[i, 1]] + d2[[i, 2]])*(10*d2[[i, 1]] + d2[[i, 2]]), {i, Length[d2]}]]; Table[num[n], {n, 100}] (* T. D. Noe, Jun 19 2012 *)

Formula

Let t_1t_2...t_n be a natural number.
a(t_1t_2...t_n) = (t_1 + t_2)*t_1t_2 + ... + (t_n-1 + t_n)*t_n-1t_n, if n even.
If n is odd, t_1 t_2...t_n <- 0t_1t_2...t_n and do a(0t_1 t_2...t_n).

A328683 Positive integers that are equal to 99...99 (repdigit with n digits 9) times the sum of their digits.

Original entry on oeis.org

81, 1782, 26973, 359964, 4499955, 53999946, 629999937, 7199999928, 80999999919, 899999999910, 9899999999901, 107999999999892, 1169999999999883, 12599999999999874, 134999999999999865, 1439999999999999856, 15299999999999999847, 161999999999999999838
Offset: 1

Views

Author

Bernard Schott, Feb 25 2020

Keywords

Comments

The idea of this sequence comes from a problem during the annual Moscow Mathematical Olympiad (MMO) in 2001 (see reference).

Examples

			359964 = 36 * 9999 and the digital sum of 359964 = 36 , so 359964 = a(4).
		

References

  • Roman Fedorov, Alexei Belov, Alexander Kovaldzhi, Ivan Yashchenko, Moscow Mathematical Olympiads, 2000-2005, Level B, Problem 5, 2001, MSRI, 2011, p. 8 and 70/71.

Crossrefs

Programs

  • Maple
    C:=seq(9*n*(10^n-1),n=1..20);
  • Mathematica
    Table[9*n*(10^n - 1), {n, 1, 18}] (* Amiram Eldar, Feb 25 2020 *)
    LinearRecurrence[{22,-141,220,-100},{81,1782,26973,359964},20] (* Harvey P. Dale, Feb 02 2025 *)
  • PARI
    Vec(81*x*(1 - 10*x^2) / ((1 - x)^2*(1 - 10*x)^2) + O(x^20)) \\ Colin Barker, Feb 25 2020

Formula

a(n) = 9 * n * (10^n - 1).
From Colin Barker, Feb 25 2020: (Start)
G.f.: 81*x*(1 - 10*x^2) / ((1 - x)^2*(1 - 10*x)^2).
a(n) = 22*a(n-1) - 141*a(n-2) + 220*a(n-3) - 100*a(n-4) for n>4.
(End)
From Michel Marcus, Feb 25 2020: (Start)
a(n) = 9*A110807(n).
a(n) = n*A086580(n). (End)

A333814 Multiples of 12 whose sum of digits is 12.

Original entry on oeis.org

48, 84, 156, 192, 228, 264, 336, 372, 408, 444, 480, 516, 552, 624, 660, 732, 804, 840, 912, 1056, 1092, 1128, 1164, 1236, 1272, 1308, 1344, 1380, 1416, 1452, 1524, 1560, 1632, 1704, 1740, 1812, 1920, 2028, 2064, 2136, 2172, 2208, 2244, 2280, 2316, 2352, 2424
Offset: 1

Views

Author

Bernard Schott, Apr 06 2020

Keywords

Comments

If m is a term, 10*m is also a term.

Examples

			732 = 12 * 61 and 7 + 3 + 2 = 12, hence 732 is a term.
		

Crossrefs

Intersection of A235151 (sum of digits = 12) and A008594 (multiples of 12).
Multiples of k whose sum of digits = k: A011557 (k=1), A069537 (k=2), A052217 (k=3), A063997 (k=4), A069540 (k=5), A062768 (k=6), A063416 (k=7), A069543 (k=8), A052223 (k=9), A333834 (k=10), A283742 (k=11), this sequence (k=12), A283737 (k=13).
Cf. A008594 (multiples of 12), A235151 (sum of digits = 12).
Cf. A057147 (a(n) = n times sum of digits of n).

Programs

  • Mathematica
    Select[12 * Range[200], Plus @@ IntegerDigits[#] == 12 &] (* Amiram Eldar, Apr 06 2020 *)
  • PARI
    is(n)=sumdigits(n)==12 && n%4==0 \\ Charles R Greathouse IV, Apr 07 2020

Formula

a(n) ~ A235151(n). - Charles R Greathouse IV, Apr 07 2020

A333834 Multiples of 10 whose sum of digits is 10.

Original entry on oeis.org

190, 280, 370, 460, 550, 640, 730, 820, 910, 1090, 1180, 1270, 1360, 1450, 1540, 1630, 1720, 1810, 1900, 2080, 2170, 2260, 2350, 2440, 2530, 2620, 2710, 2800, 3070, 3160, 3250, 3340, 3430, 3520, 3610, 3700, 4060, 4150, 4240, 4330, 4420, 4510
Offset: 1

Views

Author

Bernard Schott, Apr 07 2020

Keywords

Comments

If m is a term, 10*m is also a term.
Intersection of A052224 (sum of digits = 10) and A008592 (multiples of 10).

Examples

			2440 = 10 * 244 and 2 + 4 + 4 + 0 = 10, hence 2440 is a term.
		

Crossrefs

Multiples of k whose sum of digits = k: A011557 (k=1), A069537 (k=2), A052217 (k=3), A063997 (k=4), A069540 (k=5), A062768 (k=6), A063416 (k=7), A069543 (k=8), A052223 (k=9), this sequence (k=10), A283742 (k=11), A333814 (k=12), A283737 (k=13).
Subsequence of A218292.
Cf. A008592 (multiples of 10), A052224 (sum of digits = 10).
Cf. A057147 (a(n) = n times sum of digits of n)

Programs

  • Mathematica
    Select[10 * Range[500], Plus @@ IntegerDigits[#] == 10 &] (* Amiram Eldar, Apr 07 2020 *)

Formula

a(n) = 10*A052224(n). - Charles R Greathouse IV, Apr 07 2020
Previous Showing 11-20 of 25 results. Next