cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 65 results. Next

A345295 Decimal expansion of Product_{p primes} (1 - 1/p)*(1 + (1 - 1/p^2)*Sum_{k>=1} 1/(p^k + p^(-k-1))).

Original entry on oeis.org

8, 0, 1, 4, 6, 9, 6, 9, 3, 4, 2, 7, 5, 7, 7, 3, 3, 6, 2, 2, 4, 7, 0, 4, 9, 3, 8, 6, 8, 1, 6, 9, 8, 5, 0, 7, 3, 2, 7, 9, 0, 5, 8, 3, 3, 0, 9, 3, 6, 3, 2, 1, 9, 6, 2, 8, 9, 9, 8, 2, 7, 7, 6, 3, 9, 4, 4, 3, 2, 9, 7, 1, 9, 3, 2, 0, 2, 4, 0, 9, 9, 6, 5, 4, 8, 6, 6, 9, 3, 9, 0, 8, 5, 4, 6, 9, 3, 7, 2, 2, 7, 2, 8, 9, 2, 2
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 13 2021

Keywords

Examples

			0.80146969342757733622470493868169850732790583309363219628998277639443297...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 500; Do[Clear[f]; f[p_] := (1 - 1/p)*(1 + (1 - 1/p^2)*Sum[1/(p^j + p^(-j - 1)), {j, 1, k}]); cc = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x, m + 1]]; Print[f[2]*Exp[N[Sum[Indexed[cc, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 110]]], {k, 100, 500, 100}]

Formula

Equals lim_{n->infinity} 1/n * Sum_{k=1..n} k*A000010(k)/A057660(k).

A070999 Numbers n such that the denominator of Sum_{k=1..n} 1/gcd(n,k) is not equal to n.

Original entry on oeis.org

6, 15, 18, 21, 30, 33, 35, 42, 44, 45, 48, 51, 54, 60, 66, 69, 70, 78, 84, 87, 90, 99, 102, 105, 114, 119, 120, 123, 126, 132, 133, 135, 138, 140, 141, 144, 147, 150, 153, 159, 162, 165, 168, 174, 177, 180, 186, 195, 198, 204, 207, 210, 213, 217, 220, 221, 222
Offset: 1

Views

Author

Benoit Cloitre, May 18 2002

Keywords

Comments

Does lim_{n->infinity} a(n)/n = 3?
Sum_{k=1..n} 1/gcd(n,k) = (1/n)*Sum_{d|n} phi(d)*d = (1/n)*Sum_{k=1..n} gcd(n,k)*phi(gcd(n,k))/phi(n/gcd(n,k)), where phi = A000010. - Richard L. Ollerton, May 10 2021
Numbers k such that gcd(k, A057660(k)) > 1. - Amiram Eldar, Jun 29 2022

Examples

			Sum_{k=1..6} 1/gcd(6,k) = 7/2, hence 6 is in the sequence;
Sum_{k=1..12} 1/gcd(12,k) = 77/12 so 12 is not in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300],Denominator[Sum[1/GCD[#,k],{k,#}]]!=#&] (* Harvey P. Dale, May 07 2022 *)
    f[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); s[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[250], !CoprimeQ[#, s[#]] &] (* Amiram Eldar, Jun 29 2022 *)
  • PARI
    for(n=1,300,if(denominator(sum(i=1,n,1/gcd(n,i)))
    				

A108223 a(n) = sigma_{2n}(n^2)/sigma_n(n^2), where sigma_n(m) = Sum_{d|m} d^n.

Original entry on oeis.org

1, 13, 703, 61681, 9762501, 2140365529, 678222249307, 280379743338241, 150087010086914941, 99902428887422922553, 81402749386554449442711, 79477293980103609858493681, 91733330193268313783293023757, 123469159731637675342948027295569, 191751045863140709562160603031808243
Offset: 1

Views

Author

Leroy Quet, Jun 28 2005

Keywords

Examples

			sigma_4(4)/sigma_2(4) =
(1 + 2^4 + 4^4)/(1 + 2^2 + 4^2) = 13.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[2n, n^2]/DivisorSigma[n, n^2], {n, 10}] (* Ryan Propper, Apr 03 2007 *)
  • PARI
    a(n) = sigma(n^2, 2*n)/sigma(n^2, n); \\ Michel Marcus, Sep 06 2019

Formula

a(n) = Product_{p=primes} (Sum_{k=0..2*b(n, p)} p^(n*k)*(-1)^k), where p^b(n, p) is the highest power of p dividing n.
From Seiichi Manyama, May 18 2024: (Start)
a(n) = Sum_{1 <= x_1, x_2, ... , x_n <= n} ( n/gcd(x_1, x_2, ... , x_n, n) )^n.
a(n) = Sum_{d|n} mu(n/d) * (n/d)^n * sigma_{2*n}(d). (End)

Extensions

More terms from Ryan Propper, Apr 03 2007
More terms from Michel Marcus, Sep 06 2019

A127477 Triangle T(n,k) read by rows: matrix product A054522 * A054523.

Original entry on oeis.org

1, 2, 1, 5, 0, 2, 6, 3, 0, 2, 17, 0, 0, 0, 4, 10, 5, 4, 0, 0, 2, 37, 0, 0, 0, 0, 0, 6, 22, 11, 0, 6, 0, 0, 0, 4, 41, 0, 14, 0, 0, 0, 0, 0, 6, 34, 17, 0, 0, 8, 0, 0, 0, 0, 4, 101, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 30, 15, 12, 10, 0, 6, 0, 0, 0, 0, 0, 4, 145, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 74, 37, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 15 2007

Keywords

Comments

If the two matrices A054522 and A054523 are commuted, the matrix product becomes A127478.

Examples

			First few rows of the triangle are:
1;
2, 1;
5, 0, 2;
6, 3, 0, 2;
17, 0, 0, 0, 4;
10, 5, 4, 0, 0, 2;
37, 0, 0, 0, 0, 0, 6;
22, 11, 0, 6, 0, 0, 0, 4;
		

Crossrefs

Programs

  • Maple
    A054522 := proc(n,k) if k = 1 then 1; elif n mod k = 0 then numtheory[phi](k) ; else 0 ; fi; end:
    A054523 := proc(n,k) if k = n then 1; elif n mod k = 0 then numtheory[phi](n/k) ; else 0 ; fi; end:
    A127477 := proc(n,k) add( A054522(n,j)*A054523(j,k), j=k..n) ; end: seq(seq( A127477(n,k),k=1..n),n=1..15) ;

Formula

T(n,k) = sum_{j=k..n} A054522(n,j) * A054523(j,k).
sum_{k=1..n} T(n,k) = A057660(n) (row sums).
T(n,n) = A000010(n) (diagonal).
T(n,1) = A029939(n).

Extensions

Converted comments to formulas, extended - R. J. Mathar, Sep 11 2009

A130211 Triangle read by rows: matrix product A054522 * A000012.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 4, 3, 2, 2, 5, 4, 4, 4, 4, 6, 5, 4, 2, 2, 2, 7, 6, 6, 6, 6, 6, 6, 8, 7, 6, 6, 4, 4, 4, 4, 9, 8, 8, 6, 6, 6, 6, 6, 6, 10, 9, 8, 8, 8, 4, 4, 4, 4, 4, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 12, 11, 10, 8, 6, 6, 4, 4, 4, 4, 4, 4, 13, 12, 12, 12, 12, 12, 12, 12, 12
Offset: 1

Views

Author

Gary W. Adamson, May 17 2007

Keywords

Examples

			First few rows of the triangle are:
1;
2, 1;
3, 2, 2;
4, 3, 2, 2;
5, 4, 4, 4, 4;
6, 5, 4, 2, 2, 2;
7, 6, 6, 6, 6, 6, 6;
8, 7, 6, 6, 4, 4, 4, 4;
...
		

Crossrefs

Cf. A000010, A054522, A130212 (product with swapped order), A057660 (row sums).

Programs

Formula

A054522 * A000012 as infinite lower triangular matrices.
T(n,n) = A000010(n).

A226512 a(n) = minimum of sum of orders of all elements of G, where G is a group of order n.

Original entry on oeis.org

1, 3, 7, 7, 21, 13, 43, 15, 25, 31, 111, 31, 157, 57, 147, 31, 273, 43, 343, 71, 85, 133, 507, 67, 121, 183, 79, 157, 813, 177, 931, 63, 777, 307, 903, 111, 1333, 381, 235, 163, 1641, 183, 1807, 377, 525, 553, 2163, 127, 337, 171, 1911, 287, 2757, 133, 331, 351, 457, 871, 3423, 211
Offset: 1

Views

Author

N. J. A. Sloane, Jun 13 2013

Keywords

Examples

			For n=6 the group S_3 is optimal: it has one element of order 1, 3 of order 2, and 2 of order 3, for a total of a(6) = 13.
		

Crossrefs

Cf. A057660.

Programs

  • Magma
    // Program from G. Nebe, Jun 14 2013
    SS:=[];
    for i in [1..200] do f:=[];
    for j in [1..NumberOfSmallGroups(i)] do p:=0; G:=SmallGroup(i,j);
    for g in G do p+:= Order(g); end for; Append(~f,p); end for;
    Append(~SS,Minimum(f)); end for;
    SS;

Formula

If p is prime, a(p) = A057660(p).

Extensions

More terms from G. Nebe, Jun 14 2013

A345294 Decimal expansion of Product_{p primes} (1 - 1/p)*(1 + (1 + 1/p)*Sum_{k>=1} 1/(p^k + p^(-k-1))).

Original entry on oeis.org

1, 4, 4, 3, 8, 6, 7, 5, 1, 0, 4, 7, 0, 6, 3, 9, 6, 5, 1, 1, 2, 5, 0, 4, 4, 3, 2, 4, 9, 0, 3, 8, 4, 7, 1, 1, 4, 5, 4, 5, 5, 5, 1, 9, 7, 8, 9, 7, 1, 7, 8, 2, 5, 5, 0, 2, 7, 7, 9, 4, 3, 3, 3, 8, 8, 9, 7, 7, 8, 5, 8, 1, 6, 4, 1, 4, 9, 9, 4, 4, 6, 6, 5, 6, 9, 3, 9, 5, 4, 5, 4, 8, 9, 0, 9, 3, 5, 2, 6, 8, 8, 5, 1, 8, 8
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 13 2021

Keywords

Examples

			1.44386751047063965112504432490384711454555197897178255027794333889778581...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 500; Do[Clear[f]; f[p_] := (1 - 1/p)*(1 + (1 + 1/p)*Sum[1/(p^j + p^(-j - 1)), {j, 1, k}]); cc = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x, m + 1]]; Print[f[2]*Exp[N[Sum[Indexed[cc, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 110]]], {k, 100, 500, 100}]

Formula

Equals lim_{n->infinity} 1/n * Sum_{k=1..n} k^2/A057660(k).

A348061 a(n) = Sum_{k=1..n, gcd(n,k) = 1} n / gcd(n,k-1).

Original entry on oeis.org

1, 1, 4, 3, 16, 4, 36, 11, 34, 16, 100, 12, 144, 36, 64, 43, 256, 34, 324, 48, 144, 100, 484, 44, 396, 144, 304, 108, 784, 64, 900, 171, 400, 256, 576, 102, 1296, 324, 576, 176, 1600, 144, 1764, 300, 544, 484, 2116, 172, 1758, 396, 1024, 432, 2704, 304, 1600, 396, 1296, 784, 3364, 192
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 26 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[If[GCD[n, k] == 1, n/GCD[n, k - 1], 0], {k, n}], {n, 60}]
    f[p_, e_] := (p^(2 e + 1) - (p + 1) p^(2 e - 1) + 1)/(p + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60]
  • PARI
    a(n) = sum(k=1, n, if (gcd(n, k)==1, n/gcd(n, k-1))); \\ Michel Marcus, Sep 27 2021

Formula

Multiplicative with a(p^e) = (p^(2*e+1) - (p + 1) * p^(2*e-1) + 1) / (p + 1).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} (1 - 1/p^2 - 1/(1 + p + p^2)) = 0.1381393084... . - Amiram Eldar, Nov 18 2022

A372965 a(n) = Sum_{k = 1..n} ( n/gcd(k, n) )^4.

Original entry on oeis.org

1, 17, 163, 529, 2501, 2771, 14407, 16913, 39529, 42517, 146411, 86227, 342733, 244919, 407663, 541201, 1336337, 671993, 2345779, 1323029, 2348341, 2488987, 6156503, 2756819, 7815001, 5826461, 9605467, 7621303, 19803869, 6930271, 27705631, 17318417, 23864993
Offset: 1

Views

Author

Seiichi Manyama, May 18 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(5*e+5) - p^(5*e+4) + p^4 - 1)/(p^5-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^4*sigma(d, 5));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d^5));

Formula

a(n) = Sum_{d|n} mu(n/d) * (n/d)^4 * sigma_5(d).
a(n) = Sum_{d|n} d^(5-m) * phi(d^m) for m > 0.
G.f.: Sum_{k>=1} k^(5-m) * phi(k^m) * x^k/(1 - x^k) for m > 0.
From Amiram Eldar, May 21 2024: (Start)
Multiplicative with a(p^e) = (p^(5*e+5) - p^(5*e+4) + p^4 - 1)/(p^5-1).
Dirichlet g.f.: zeta(s)*zeta(s-5)/zeta(s-4).
Sum_{k=1..n} a(k) ~ c * n^6 / 6, where c = zeta(6)/zeta(2) = 2*Pi^4/315 = 0.6184704192... (1/A157292). (End)

A060367 Average order of an element in a cyclic group of order n rounded down.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 6, 5, 6, 6, 10, 6, 12, 9, 9, 10, 16, 10, 18, 11, 14, 15, 22, 12, 20, 18, 20, 16, 28, 14, 30, 21, 23, 24, 25, 18, 36, 27, 28, 22, 40, 21, 42, 27, 28, 33, 46, 24, 42, 31, 37, 33, 52, 30, 42, 33, 42, 42, 58, 26, 60, 45, 41, 42, 50, 35, 66, 44, 51
Offset: 1

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Apr 01 2001

Keywords

Crossrefs

Programs

  • Maple
    seq(floor(numtheory:-sigma[2](n^2)/numtheory:-sigma(n^2)/n), n=1..1000); # Robert Israel, Mar 24 2015
  • Mathematica
    f[n_] := Block[{i, j, k}, Reap@ For[j = 1, j <= n, j++, Sow[Floor[Sum[1/GCD[j, k], {k, 1, j}]]]]] // Flatten // Rest; f@ 49 (* Michael De Vlieger, Mar 24 2015 *)
    a[n_] := Floor[DivisorSigma[2, n^2]/DivisorSigma[1, n^2]/n]; Array[a, 100] (* Amiram Eldar, Jul 25 2025 *)
  • PARI
    a(n) = {my(f = factor(n^2)); floor(sigma(f, 2)/(n * sigma(f)));} \\ Amiram Eldar, Jul 25 2025
  • Sage
    [floor(sum([1/gcd(n,k) for k in range(1,n+1)])) for n in range(1,50)] # Danny Rorabaugh, Mar 24 2015
    

Formula

Sequence A057660 gives the sum of the orders of the elements in a cyclic group with n elements so a(n) = floor(A057660(n) / n) = floor(Sum_{k=1..n} 1/GCD(n, k)) = floor(Sum of 1/d times phi(n/d)) for all divisors d of n, where phi is Euler's phi function. This sum may also be expressed as the product of (p^(2*e(p)+1)+1)/((p+1)*p^e(p)) over all prime divisors p of n where the canonical factorization of n is the product of p^e(p), the e(p) being the exponents of the power of p in the factorization.
From Amiram Eldar, Jul 25 2025: (Start)
a(n) = floor(sigma_2(n^2)/(n*sigma(n))) = floor(A001157(n^2)/(n*A000203(n^2))) = floor(A065827(n)/(n*A065764(n))).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(3)/zeta(2) (A253905). (End)

Extensions

Offset corrected and terms a(18)-a(50) added by Danny Rorabaugh, Mar 24 2015
Previous Showing 41-50 of 65 results. Next