cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A103782 a(n) = minimal m >= 0 that makes primorial P(n)*2^m-1 prime.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 1, 2, 3, 12, 1, 0, 22, 2, 4, 13, 12, 6, 1, 4, 1, 4, 0, 2, 9, 5, 6, 2, 1, 9, 17, 22, 7, 19, 73, 23, 12, 5, 27, 33, 64, 33, 5, 7, 41, 44, 35, 29, 3, 19, 6, 26, 5, 11, 9, 33, 34, 16, 63, 46, 8, 4, 24, 48, 0, 11, 0, 26, 6, 25, 17, 31, 6, 46, 33, 46, 17, 8, 61, 12, 23, 76, 20, 17
Offset: 2

Views

Author

Lei Zhou, Feb 15 2005

Keywords

Comments

The values of n in A103515

Examples

			P(2)*2^0-1=5 is prime, so a(2)=0; P(9)*2^2-1=892371479 is prime, so a(9)=2;
		

Crossrefs

Programs

  • Mathematica
    nmax = 2^2048; npd = 2; n = 2; npd = npd*Prime[n]; While[npd < nmax, tn = 0; tt = 1; cp = npd*tt - 1; While[(cp > 1) && (! (PrimeQ[cp])), tn = tn + 1; tt = tt*2; cp = npd*tt - 1]; Print[tn]; n = n + 1; npd = npd*Prime[n]]

A104876 Semiprimes of the form primorial(k) - 1.

Original entry on oeis.org

209, 510509, 6469693229, 200560490129, 13082761331670029, 1922760350154212639069, 557940830126698960967415389, 40729680599249024150621323469, 2305567963945518424753102147331756069, 232862364358497360900063316880507363069
Offset: 1

Views

Author

Jonathan Vos Post, Mar 28 2005

Keywords

Examples

			4# - 1 = 209 = 11 * 19.
7# - 1 = 510509 = 61 * 8369.
10# - 1 = 6469693229 = 79 * 81894851.
		

Crossrefs

Programs

  • Mathematica
    Bigomega[n_]:=Plus@@Last/@FactorInteger[n]; SemiprimeQ[n_]:=Bigomega[n]==2; Primorial[n_]:=Product[Prime[i], {i, n}]; Select[Table[Primorial[n]-1, {n, 30}], SemiprimeQ] (* Ray Chandler, Mar 28 2005 *)

Formula

n# - 1 iff semiprime. Equals {A002110(i) - 1} intersection {A001358(j)}.

Extensions

Entry revised by N. J. A. Sloane, Apr 01 2006

A103513 Primes of the form primorial(P(k))/2-2^n with minimal n, n>=0, k>=2.

Original entry on oeis.org

2, 13, 103, 1153, 15013, 255253, 4849843, 111546433, 3234846607, 100280245063, 3710369067401, 152125131763603, 6541380632280583, 307444891294245701, 16294579238595022363, 961380175077106319471, 58644190679703485491571
Offset: 1

Views

Author

Lei Zhou, Feb 15 2005

Keywords

Comments

The Mathematica Program does not produce a(2). Conjecture: sequence is defined for all k>=2.

Examples

			P(2)/2=3, 3-2^0=2 is prime, so a(2)=2;
P(5)/2=1155, 1155-2^1=1153 is prime, so a(5)=1153;
		

Crossrefs

Programs

  • Mathematica
    nmax = 2^8192; npd = 1; n = 2; npd = npd*Prime[n]; While[npd < nmax, tt = 2; cp = npd - tt; While[(cp > 1) && (! (PrimeQ[cp])), tt = tt*2; cp = npd - tt]; If[cp < 2, Print["*"], Print[cp]]; n = n + 1; npd = npd*Prime[n]]

A104877 Semiprimes of the form primorial(k) + 1.

Original entry on oeis.org

30031, 9699691, 223092871, 13082761331670031, 117288381359406970983271, 7858321551080267055879091, 40729680599249024150621323471, 267064515689275851355624017992791
Offset: 1

Views

Author

Jonathan Vos Post, Mar 28 2005

Keywords

Examples

			6# + 1 = 2*3*5*7*11*13 + 1 = 30031 = 59 x 509.
8# + 1 = 2*3*5*7*11*13*17*19 + 1 = 9699691 = 347 x 27953.
9# + 1 = 2*3*5*7*11*13*17*19*23 + 1 = 223092871 = 317 x 703763.
14# + 1 = 2*3*5*7*11*13*17*19*23*29*31*37*41*43 + 1 = 13082761331670031 = 167 x 78339888213593.
		

Crossrefs

Programs

  • Mathematica
    Bigomega[n_]:=Plus@@Last/@FactorInteger[n]; SemiprimeQ[n_]:=Bigomega[n]==2; Primorial[n_]:=Product[Prime[i], {i, n}]; Select[Table[Primorial[n]+1, {n, 30}], SemiprimeQ] (* Ray Chandler, Mar 28 2005 *)
    Select[FoldList[Times,Prime[Range[30]]]+1,PrimeOmega[#]==2&] (* Harvey P. Dale, Oct 13 2022 *)

Formula

n# + 1 iff semiprime. Equals {A002110(i) + 1} intersection {A001358(j)}.

A135505 a(0) = 1; a(n) = [product_(i = 1..n) prime(i)^i] - 1, where prime(i) is i-th prime.

Original entry on oeis.org

1, 1, 17, 2249, 5402249, 870037764749, 4199506113235182749, 1723219765760312626547490749, 29266411525287522788837599332989370749, 52713275010243038997421106186697438702252144407249, 22176856087751973465466098269669474342964368337745368642450857249
Offset: 0

Views

Author

Ctibor O. Zizka, Feb 19 2008

Keywords

Crossrefs

Programs

  • PARI
    a(n) = { if (n <= 0, return(1)); prod(i = 1, n, prime(i)^i) - 1;}
    vector(11, i, a(i-1))  \\ Gheorghe Coserea, Aug 24 2015

Formula

a(n) = A076954(n)-1, n>0. - R. J. Mathar, Nov 01 2009

Extensions

Converted references to links - R. J. Mathar, Oct 30 2009

A135516 a(0)=1; a(n) = (Product_{i=1..n} prime(i)^2) - 1, where prime(i) is the i-th prime.

Original entry on oeis.org

1, 3, 35, 899, 44099, 5336099, 901800899, 260620460099, 94083986096099, 49770428644836899, 41856930490307832899, 40224510201185827416899, 55067354465423397733736099, 92568222856376731590410384099
Offset: 0

Views

Author

Ctibor O. Zizka, Feb 19 2008

Keywords

Comments

Sequence can be generalized: a(0)=1; a(n) = (Product_{i=1..n} prime(i)^r) - 1, where prime(i) is the i-th prime.

Crossrefs

Programs

  • Maple
    A002110 := proc(n) mul(ithprime(i),i=1..n) ; end:
    A135516 := proc(n) if n =0 then 1; else (A002110(n)+1)*(A002110(n)-1) ; fi ; end: seq(A135516(n),n=0..20) ; # R. J. Mathar, Feb 28 2008
  • Mathematica
    Join[{1},Rest[#-1&/@FoldList[Times,1,Prime[Range[15]]^2]]] (* Harvey P. Dale, Oct 02 2011 *)
    Join[{1}, Table[Product[Prime[i]^(2), {i,1,n}] - 1, {n,1,15}]] (* G. C. Greubel, Oct 17 2016 *)
  • PARI
    a(n) = if(n==0, 1, prod(k=1, n, prime(k)^2) - 1); \\ Michel Marcus, Oct 17 2016

Formula

a(n) = A061742(n-1)-1 = (A002110(n)+1)*(A002110(n)-1) for n>1. - R. J. Mathar, Feb 28 2008

Extensions

Offset corrected by Georg Fischer, Jun 18 2021

A248584 Decimal expansion of the value of the continued fraction constructed from prime primorials plus 1.

Original entry on oeis.org

3, 1, 8, 2, 4, 8, 1, 6, 5, 0, 8, 3, 6, 9, 0, 1, 2, 4, 7, 7, 7, 6, 8, 5, 5, 8, 9, 9, 9, 6, 7, 8, 7, 8, 4, 4, 7, 8, 8, 6, 5, 7, 1, 2, 2, 3, 3, 1, 5, 3, 3, 0, 4, 9, 4, 6, 7, 0, 9, 4, 7, 9, 6, 9, 6, 0, 9, 0, 4, 3, 2, 9, 3, 5, 8, 3, 3, 3, 5, 0, 4, 6, 3, 7, 7, 9, 5, 0, 0, 6, 1, 9, 8, 8, 2, 5, 6, 0, 1, 7, 3, 9
Offset: 0

Views

Author

Jean-François Alcover, Oct 09 2014

Keywords

Examples

			0.318248165083690124777685589996787844788657122331533049467...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[FromContinuedFraction[{0, 3, 7, 31, 211, 2311, 200560490131}], 102]] // First

A248585 Decimal expansion of the value of the continued fraction constructed from prime primorials minus 1.

Original entry on oeis.org

1, 9, 8, 6, 3, 0, 1, 5, 7, 3, 0, 3, 5, 0, 3, 8, 1, 0, 8, 7, 5, 2, 0, 1, 2, 3, 3, 6, 1, 4, 3, 4, 6, 8, 6, 2, 8, 7, 5, 8, 7, 0, 6, 3, 0, 8, 9, 8, 4, 7, 9, 7, 7, 7, 6, 2, 5, 6, 4, 7, 0, 2, 4, 9, 8, 4, 2, 3, 5, 5, 4, 1, 1, 5, 1, 3, 0, 8, 4, 4, 2, 6, 1, 9, 0, 9, 2, 3, 1, 4, 7, 3, 7, 3, 6, 3, 3, 9, 3, 1, 2, 8
Offset: 0

Views

Author

Jean-François Alcover, Oct 09 2014

Keywords

Examples

			0.198630157303503810875201233614346862875870630898479777625647...
		

Crossrefs

Programs

  • Mathematica
    cf = {0, 5, 29, 2309, 30029, 304250263527209, 23768741896345550770650537601358309}; RealDigits[N[FromContinuedFraction[cf], 102]] // First

A228486 Near primorial primes: primes p such that p+1 or p-1 is a primorial number (A002110).

Original entry on oeis.org

2, 3, 5, 7, 29, 31, 211, 2309, 2311, 30029, 200560490131, 304250263527209, 23768741896345550770650537601358309
Offset: 1

Views

Author

Jonathan Vos Post, Aug 22 2013

Keywords

Comments

The next few terms are too large to add: 317#-1, 337#-1, 379#+1, 991#-1. - Charles R Greathouse IV, Sep 12 2013

Crossrefs

Formula

A057705 UNION {primes p such that p-1 is a primorial number} = {primes p such that p+1 is a primorial number (A002110)} UNION {primes p such that p-1 is a primorial number}.

Extensions

a(1)-a(2), a(7), a(11) inserted by Charles R Greathouse IV, Sep 12 2013

A286424 Number of partitions of p_n# into parts (q, k) both coprime to p_n#, with q prime and k nonprime, where p_n# = A002110(n).

Original entry on oeis.org

0, 0, 1, 1, 4, 110, 1432, 23338, 397661, 8193828, 212858328, 5941706227
Offset: 0

Views

Author

Michael De Vlieger, May 08 2017

Keywords

Comments

Number of totative pairs (q, k) such that prime q + k nonprime = p_n# and both gcd(q, p_n#) = 1 and gcd(k, p_n#) = 1, with p_n < q <= pi(p_n#), where pi(p_n#) = A000849(n) - n = A048862(n).
Primes p_n < q <= pi(p_n#) are greater than the greatest prime factor of p_n# = p_n, and are thus coprime to p_n#. By the definition of primorial, we need not consider p >= p_n, as these p are divisors of p_n#, i.e., gcd(p, p_n#) = p. Since the totatives of m can be paired such that a + b = m, we need only determine if (p_n# - q) is not prime in order to count pairs (q, k).
a(n) < floor(A005867(n)/2).
a(n) <= A048862(n).
The totative pair (q,1) = (p_n# - 1, 1) is counted by a(n) for n in A057704, with (p_n# - 1) appearing in A057705.

Examples

			a(0) = 0 by definition. A002110(0) = 1; 1 is coprime to all numbers; the only possible totative pair is (1,1) and this does not include both a prime and a nonprime.
a(1) = 0 since, of the floor(A005867(1)/2) = 1 totative pair (1,1) of A002110(1) = 2, none include a both a prime and a nonprime.
a(2) = 1 since, the only totative pair (1,5) of A002110(1) = 6 includes both a prime and a nonprime.
a(3) = 1 since only (1,29) includes both a prime and a nonprime.
a(4) = 4 since (23,187), (41,169), (67,143), (89,121) include a both a prime and a nonprime.
		

Crossrefs

Programs

  • Mathematica
    Table[Function[P, Count[Prime@ Range[n + 1, PrimePi[P]], q_ /; ! PrimeQ[P - q]]]@ Product[Prime@ i, {i, n}], {n, 0, 9}] (* Michael De Vlieger, May 08 2017 *)

Formula

a(n) = (A000010(A002110(n)) - A048863(n)) - 2*A117929(A002110(n))
= (A005867(n) - A048863(n)) - 2*A117929(A002110(n))
= A048862(n) - 2*A117929(A002110(n)).

Extensions

a(11) from Giovanni Resta, May 09 2017
Previous Showing 11-20 of 20 results.