cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A074249 a(n) = largest prime factor of 7^n-1.

Original entry on oeis.org

3, 3, 19, 5, 2801, 43, 4733, 1201, 1063, 2801, 293459, 181, 16148168401, 4733, 159871, 169553, 2767631689, 117307, 4534166740403, 4021, 11898664849, 10746341, 31479823396757, 1201, 31280679788951, 16148168401, 2583253
Offset: 1

Views

Author

N. J. A. Sloane, Sep 26 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[FactorInteger[7^n - 1] [[-1, 1]], {n, 30}]] (* Vincenzo Librandi, Aug 23 2012 *)
  • PARI
    a(n) = vecmax(factor(7^n-1)[,1]); \\ Michel Marcus, Dec 16 2017

Formula

a(n) = A006530(A024075(n)). - Michel Marcus, Dec 16 2017

Extensions

More terms from Benoit Cloitre, Sep 29 2002
Terms to a(80) in b-file from Vincenzo Librandi, Aug 23 2013
a(81)-a(378) in b-file from Amiram Eldar, Feb 02 2020
a(0) removed and a(379)-a(388) in b-file added by Max Alekseyev, Apr 25 2022, Sep 11 2022

A085032 Number of prime factors of cyclotomic(n,7), which is A019325(n), the value of the n-th cyclotomic polynomial evaluated at x=7.

Original entry on oeis.org

2, 3, 2, 3, 1, 1, 2, 2, 3, 2, 2, 2, 1, 2, 2, 3, 2, 1, 2, 3, 1, 2, 3, 3, 2, 2, 5, 1, 3, 1, 3, 3, 3, 1, 2, 1, 3, 2, 3, 2, 3, 2, 2, 3, 2, 1, 2, 1, 4, 1, 4, 2, 3, 1, 1, 4, 4, 1, 4, 2, 4, 3, 1, 4, 5, 2, 4, 3, 3, 4, 2, 3, 5, 2, 2, 1, 3, 3, 2, 3, 5, 4, 7, 1
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057954, number of prime factors of 7^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), this sequence (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 7]]][[2]], {n, 1, 100}]

A366632 Number of distinct prime divisors of 7^n - 1.

Original entry on oeis.org

2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 4, 7, 3, 6, 6, 6, 4, 7, 4, 8, 6, 6, 5, 11, 5, 5, 9, 8, 5, 10, 5, 8, 8, 5, 7, 11, 5, 6, 7, 11, 5, 11, 4, 10, 10, 6, 4, 14, 8, 8, 9, 8, 5, 12, 6, 13, 8, 6, 6, 17, 6, 8, 9, 11, 9, 13, 6, 9, 9, 15, 4, 18, 7, 7, 10, 8, 9, 13, 4, 16, 13
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 1, 100, print1(omega(7^n - 1), ", "))

Formula

a(n) = omega(7^n-1) = A001221(A024075(n)).

A366633 Number of divisors of 7^n-1.

Original entry on oeis.org

4, 10, 12, 36, 8, 60, 16, 84, 64, 80, 16, 864, 8, 160, 96, 384, 16, 640, 16, 1536, 96, 160, 32, 16128, 32, 80, 1280, 1152, 32, 3840, 32, 1728, 384, 80, 128, 18432, 32, 160, 192, 14336, 32, 7680, 16, 4608, 2048, 160, 16, 147456, 256, 640, 768, 1152, 32, 25600
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(5)=8 because 7^5-1 has divisors {1, 2, 3, 6, 2801, 5602, 8403, 168061}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](7^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0, 7^Range[100]-1]
  • PARI
    a(n) = numdiv(7^n-1);

Formula

a(n) = sigma0(7^n-1) = A000005(A024075(n)).

A366634 Sum of the divisors of 7^n-1.

Original entry on oeis.org

12, 124, 780, 7812, 33624, 354640, 1704240, 18929096, 97036800, 800520192, 3958188480, 56928231360, 193778020824, 1830926384640, 11181115146240, 115997032277280, 465294239722800, 5175558387507200, 22852200371636160, 287850454432579584, 1318081737957660000
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(5)=33624 because 7^5-1 has divisors {1, 2, 3, 6, 2801, 5602, 8403, 16806}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](7^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[1, 7^Range[30]-1]

Formula

a(n) = sigma(7^n-1) = A000203(A024075(n)).

A218358 Minimal order of degree-n irreducible polynomials over GF(7).

Original entry on oeis.org

1, 4, 9, 5, 2801, 36, 29, 64, 27, 11, 1123, 13, 16148168401, 113, 31, 17, 14009, 108, 419, 55, 261, 23, 47, 73, 2551, 53, 81, 145, 59, 99, 311, 256, 3631, 56036, 81229, 135, 223, 1676, 486643, 41, 83, 1017, 166003607842448777, 115, 837, 188, 13722816749522711
Offset: 1

Views

Author

Alois P. Heinz, Oct 27 2012

Keywords

Comments

a(n) < 7^n.

Crossrefs

Programs

  • Maple
    with(numtheory):
    M:= proc(n) M(n):= divisors(7^n-1) minus U(n-1) end:
    U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end:
    a:= n-> min(M(n)[]):
    seq(a(n), n=1..42);
  • Mathematica
    M[n_] := M[n] = Divisors[7^n - 1]~Complement~U[n - 1];
    U[n_] := U[n] = If[n == 0, {}, M[n]~Union~U[n - 1]];
    a[n_] := Min[M[n]];
    Table[a[n], {n, 1, 47}] (* Jean-François Alcover, Oct 24 2022, after Alois P. Heinz *)

Formula

a(n) = min(M(n)) with M(n) = {d : d|(7^n-1)} \ U(n-1) and U(n) = M(n) union U(n-1) for n>0, U(0) = {}.
a(n) = A212486(n,1) = A213224(n,4).

A366708 Number of prime factors of 12^n - 1 (counted with multiplicity).

Original entry on oeis.org

1, 2, 2, 4, 2, 5, 3, 6, 4, 4, 4, 8, 3, 6, 6, 9, 3, 9, 2, 8, 5, 6, 4, 12, 4, 8, 6, 10, 5, 13, 5, 11, 8, 6, 9, 14, 3, 6, 7, 14, 4, 14, 5, 12, 12, 8, 3, 18, 5, 10, 6, 13, 7, 16, 8, 13, 7, 8, 4, 19, 4, 8, 8, 13, 8, 17, 5, 10, 7, 14, 4, 21, 3, 7, 11, 11, 11, 18, 4
Offset: 1

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeOmega[12^Range[70]-1]
  • PARI
    a(n)=bigomega(12^n-1)

Formula

a(n) = bigomega(12^n-1) = A001222(A024140(n)).

A366682 Number of prime factors of 11^n - 1 (counted with multiplicity).

Original entry on oeis.org

2, 5, 4, 7, 4, 9, 4, 9, 5, 8, 4, 13, 4, 8, 7, 12, 3, 12, 3, 11, 10, 11, 5, 17, 8, 10, 6, 13, 4, 15, 5, 15, 9, 9, 8, 17, 6, 10, 12, 15, 9, 17, 4, 15, 9, 12, 5, 24, 7, 14, 9, 13, 6, 16, 10, 19, 8, 10, 5, 21, 5, 12, 16, 19, 8, 22, 6, 15, 10, 19, 7, 24, 3, 11, 15
Offset: 1

Views

Author

Sean A. Irvine, Oct 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeOmega[11^Range[70]-1]
  • PARI
    a(n)=bigomega(11^n-1)

Formula

a(n) = bigomega(11^n-1) = A001222(A024127(n)).
Previous Showing 11-18 of 18 results.