cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A189230 Complementary Catalan triangle read by rows.

Original entry on oeis.org

0, 1, 0, 0, 2, 0, 3, 0, 3, 0, 0, 8, 0, 4, 0, 10, 0, 15, 0, 5, 0, 0, 30, 0, 24, 0, 6, 0, 35, 0, 63, 0, 35, 0, 7, 0, 0, 112, 0, 112, 0, 48, 0, 8, 0, 126, 0, 252, 0, 180, 0, 63, 0, 9, 0, 0, 420, 0, 480, 0, 270, 0, 80, 0, 10, 0, 462, 0, 990, 0, 825, 0, 385, 0, 99, 0, 11, 0
Offset: 0

Views

Author

Peter Luschny, May 01 2011

Keywords

Comments

T(n,k) = A189231(n,k)*((n - k) mod 2). For comparison: the classical Catalan triangle is A053121(n,k) = A189231(n,k)*((n-k+1) mod 2).
T(n,0) = A138364(n). Row sums: A100071.

Examples

			[0]  0,
[1]  1,  0,
[2]  0,  2,  0,
[3]  3,  0,  3,  0,
[4]  0,  8,  0,  4,  0,
[5] 10,  0, 15,  0,  5, 0,
[6]  0, 30,  0, 24,  0, 6, 0,
[7] 35,  0, 63,  0, 35, 0, 7, 0,
   [0],[1],[2],[3],[4],[5],[6],[7]
		

Crossrefs

Programs

  • Maple
    A189230 := (n,k) -> A189231(n,k)*modp(n-k,2):
    seq(print(seq(A189230(n,k),k=0..n)),n=0..11);
  • Mathematica
    t[n_, k_] /; (k>n || k<0) = 0; t[n_, n_] = 1; t[n_, k_] := t[n, k] = t[n-1, k-1] + Mod[n-k, 2] t[n-1, k] + t[n-1, k+1];
    T[n_, k_] := t[n, k] Mod[n-k, 2];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] (* Jean-François Alcover, Jun 24 2019 *)

A194589 a(n) = A194588(n) - A005043(n); complementary Riordan numbers.

Original entry on oeis.org

0, 0, 1, 1, 5, 11, 34, 92, 265, 751, 2156, 6194, 17874, 51702, 149941, 435749, 1268761, 3700391, 10808548, 31613474, 92577784, 271407896, 796484503, 2339561795, 6877992334, 20236257626, 59581937299, 175546527727, 517538571125, 1526679067331, 4505996000730
Offset: 0

Views

Author

Peter Luschny, Aug 30 2011

Keywords

Comments

The inverse binomial transform of a(n) is A194590(n).

Crossrefs

Programs

  • Maple
    # First method, describes the derivation:
    A056040 := n -> n!/iquo(n,2)!^2:
    A057977 := n -> A056040(n)/(iquo(n,2)+1);
    A001006 := n -> add(binomial(n,k)*A057977(k)*irem(k+1,2),k=0..n):
    A005043 := n -> `if`(n=0,1,A001006(n-1)-A005043(n-1)):
    A189912 := n -> add(binomial(n,k)*A057977(k),k=0..n):
    A194588 := n -> `if`(n=0,1,A189912(n-1)-A194588(n-1)):
    A194589 := n -> A194588(n)-A005043(n):
    # Second method, more efficient:
    A100071 := n -> A056040(n)*(n/2)^(n-1 mod 2):
    A194589 := proc(n) local k;
    (n mod 2)+(1/2)*add((-1)^k*binomial(n,k)*A100071(k+1),k=1..n) end:
    # Alternatively:
    a := n -> `if`(n<3,iquo(n,2),hypergeom([1-n/2,-n,3/2-n/2],[1,2-n],4)): seq(simplify(a(n)), n=0..30); # Peter Luschny, Mar 07 2017
  • Mathematica
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Mod[n, 2] + (1/2)*Sum[(-1)^k*Binomial[n, k]*2^-Mod[k, 2]*(k+1)^Mod[k, 2]*sf[k+1], {k, 1, n}]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jul 30 2013, from 2nd method *)
    Table[If[n < 3, Quotient[n, 2], HypergeometricPFQ[{1 - n/2, -n, 3/2 - n/2}, {1, 2-n}, 4]], {n,0,30}] (* Peter Luschny, Mar 07 2017 *)
  • Maxima
    a(n):=sum(binomial(n+2,k)*binomial(n-k,k),k,0,(n)/2); /* Vladimir Kruchinin, Sep 28 2015 */
    
  • PARI
    a(n) = sum(k=0, n/2, binomial(n+2,k)*binomial(n-k,k));
    vector(30, n, a(n-3)) \\ Altug Alkan, Sep 28 2015

Formula

a(n) = sum_{k=0..n} C(n,k)*A194590(k).
a(n) = (n mod 2)+(1/2)*sum_{k=1..n} (-1)^k*C(n,k)*(k+1)$*((k+1)/2)^(k mod 2). Here n$ denotes the swinging factorial A056040(n).
a(n) = PSUMSIGN([0,0,1,2,6,16,45,..] = PSUMSIGN([0,0,A005717]) where PSUMSIGN is from Sloane's "Transformations of integer sequences". - Peter Luschny, Jan 17 2012
A(x) = B'(x)*(1/x^2-1/(B(x)*x)), where B(x)/x is g.f. of A005043. - Vladimir Kruchinin, Sep 28 2015
a(n) = Sum_{k=0..n/2} C(n+2,k)*C(n-k,k). - Vladimir Kruchinin, Sep 28 2015
a(n) = hypergeom([1-n/2,-n,3/2-n/2],[1,2-n],4) for n>=3. - Peter Luschny, Mar 07 2017
a(n) ~ 3^(n + 1/2) / (8*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 17 2024

A190907 Triangle read by rows: T(n,k) = binomial(n+k, n-k) k! / (floor(k/2)! * floor((k+2)/2)!).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 5, 3, 1, 10, 15, 21, 2, 1, 15, 35, 84, 18, 10, 1, 21, 70, 252, 90, 110, 5, 1, 28, 126, 630, 330, 660, 65, 35, 1, 36, 210, 1386, 990, 2860, 455, 525, 14, 1, 45, 330, 2772, 2574, 10010, 2275, 4200, 238, 126
Offset: 0

Views

Author

Peter Luschny, May 24 2011

Keywords

Comments

The triangle may be regarded as a generalization of the triangle A088617.
A088617(n,k) = binomial(n+k,n-k)*(2*k)$/(k+1);
T(n,k) = binomial(n+k,n-k)*(k)$ /(floor(k/2)+1).
Here n$ denotes the swinging factorial A056040(n). As A088617 is a decomposition of the large Schroeder numbers A006318, a combinatorial interpretation of T(n,k) in terms of lattice paths can be expected.
T(n,n) = A057977(n) which can be seen as extended Catalan numbers.

Examples

			[0]  1
[1]  1,  1
[2]  1,  3,   1
[3]  1,  6,   5,   3
[4]  1, 10,  15,  21,   2
[5]  1, 15,  35,  84,  18,  10
[6]  1, 21,  70, 252,  90, 110,  5
[7]  1, 28, 126, 630, 330, 660, 65, 35
		

Crossrefs

Programs

  • Maple
    A190907 := (n,k) -> binomial(n+k,n-k)*k!/(floor(k/2)!*floor((k+2)/2)!);
    seq(print(seq(A190907(n,k), k=0..n)), n=0..7);
  • Mathematica
    Flatten[Table[Binomial[n+k,n-k] k!/(Floor[k/2]!Floor[(k+2)/2]!),{n,0,10},{k,0,n}]] (* Harvey P. Dale, May 05 2012 *)

Formula

T(n,1) = A000217(n). T(n,2) = (n-1)*n*(n+1)*(n+2)/24 (Cf. A000332).

A238452 Second column of the extended Catalan triangle A189231.

Original entry on oeis.org

0, 1, 2, 2, 8, 5, 30, 14, 112, 42, 420, 132, 1584, 429, 6006, 1430, 22880, 4862, 87516, 16796, 335920, 58786, 1293292, 208012, 4992288, 742900, 19315400, 2674440, 74884320, 9694845, 290845350, 35357670, 1131445440, 129644790, 4407922860, 477638700, 17194993200
Offset: 0

Views

Author

Peter Luschny, Mar 01 2014

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember;
      if n < 3 then return n fi;
      if n mod 2 = 0 then return n*a(n-1) fi;
      h := iquo(n,2); n*a(n-1)/(h*(h+2)) end:
    seq(a(n), n=0..36);
  • Mathematica
    t[n_, k_] /; (k > n || k < 0) = 0; t[n_, n_] = 1; t[n_, k_] := t[n, k] =
      t[n - 1, k - 1] + Mod[n - k, 2] t[n - 1, k] + t[n - 1, k + 1];
    a[n_] := t[n, 1];
    Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Jul 10 2019 *)
  • Sage
    def A238452():
        a = 1; n = 2
        yield 0
        while True:
            yield a
            a *= n
            if is_odd(n):
                a /= (n//2*(n//2+2))
            n += 1
    a = A238452(); [next(a) for n in range(36)]

Formula

Definition: a(n) = binomial(n+1, floor(n/2)+1) / (floor(n/2)+2) if n is odd, and 2*binomial(n, floor(n/2)+1) otherwise.
a(n) = A189231(n, 1).
a(n) = A238762(n+1, n-1).
a(2*n) = A162551(n).
a(2*n+1) = A000108(n+1).
a(n) = A057977(n+1) - A057977(n)*((n+1) mod 2). - Peter Luschny, Aug 07 2016

A240558 a(n) = 2^n*n!/((floor(n/2)+1)*floor(n/2)!^2).

Original entry on oeis.org

1, 2, 4, 24, 32, 320, 320, 4480, 3584, 64512, 43008, 946176, 540672, 14057472, 7028736, 210862080, 93716480, 3186360320, 1274544128, 48432676864, 17611882496, 739699064832, 246566354944, 11342052327424, 3489862254592, 174493112729600, 49855175065600
Offset: 0

Views

Author

Peter Luschny, Apr 14 2014

Keywords

Crossrefs

Programs

  • Maple
    A240558 := n -> 2^n*n!/((iquo(n,2)+1)*iquo(n,2)!^2):
    seq(A240558(n), n=0..30);
  • Mathematica
    Table[SeriesCoefficient[((I*(2*x*(8*x+1)-1))/Sqrt[16*x^2-1]-2*x+1) /(8*x^2), {x,0,n}], {n,0,22}]
  • PARI
    x='x+O('x^50); Vec(round((I*(2*x*(8*x+1)-1))/sqrt(16*x^2-1)-2*x+1) /(8*x^2)) \\ G. C. Greubel, Apr 05 2017
  • Sage
    def A240558():
        x, n = 1, 1
        while True:
            yield x
            m = 2*n if is_odd(n) else 8/(n+2)
            x *= m
            n += 1
    a = A240558(); [next(a) for i in range(36)]
    

Formula

O.g.f.: ((i*(2*x*(8*x+1)-1))/sqrt(16*x^2-1)-2*x+1) /(8*x^2), where i=sqrt(-1).
For a recurrence see the Sage program.
a(n) = 2^n*A057977(n)
a(2*k) = A151403(k) = 2^k*A151374(k) = 4^k*A000108(k).
a(2*k+1) = A099045(k+1) = 2^k*A069723(k+2) = 4^k*A000984(k+1).
From Peter Luschny, Jan 31 2015: (Start)
a(n) = Sum_{k=0..n} A056040(n)*C(n,k)/(floor(n/2)+1).
a(n) = Sum_{k=0..n} n!*C(n,k)/((floor(n/2)+1)*(floor(n/2)!)^2).
a(n) = 2^n*n!*[x^n]((x+1)*hypergeom([],[2],x^2)).
a(n) ~ 2^(n+N)/((n+1)^*sqrt(Pi*(2*N+1))); here = 1 if n is even, 0 otherwise and N = n++1. (End)
Conjecture: -(n+2)*(n^2-5)*a(n) +8*(-2*n-1)*a(n-1) +16*(n-1)*(n^2+2*n-4)*a(n-2)=0. - R. J. Mathar, Jun 14 2016

A275327 Triangle read by rows, Riordan array (1, (2+(x-1)/(2*x^2)*(1-sqrt(1-4*x^2)))/ sqrt(1-4*x^2)).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 2, 7, 3, 1, 0, 10, 10, 12, 4, 1, 0, 5, 33, 25, 18, 5, 1, 0, 35, 42, 78, 48, 25, 6, 1, 0, 14, 144, 144, 155, 80, 33, 7, 1, 0, 126, 168, 420, 356, 275, 122, 42, 8, 1, 0, 42, 610, 723, 1018, 736, 450, 175, 52, 9, 1
Offset: 0

Views

Author

Peter Luschny, Aug 16 2016

Keywords

Examples

			Table starts:
[n] [k=0,1,2,...] row sum
[0] [1] 1
[1] [0, 1] 1
[2] [0, 1, 1] 2
[3] [0, 3, 2, 1] 6
[4] [0, 2, 7, 3, 1] 13
[5] [0, 10, 10, 12, 4, 1] 37
[6] [0, 5, 33, 25, 18, 5, 1] 87
[7] [0, 35, 42, 78, 48, 25, 6, 1] 235
[8] [0, 14, 144, 144, 155, 80, 33, 7, 1] 578
[9] [0, 126, 168, 420, 356, 275, 122, 42, 8, 1] 1518
		

Crossrefs

Cf. A057977 (column 1), A128899, A275328.

Programs

  • Maple
    S := proc(n, k) option remember; local ecn:
    if n = 0 then return n^k fi;
    ecn := n -> n!/(iquo(n,2)!^2)/(iquo(n,2)+1);
    add(ecn(i)*S(n-1,k-i), i=1..k-n+1) end:
    A275327 := (n, k) -> S(k, n):
    seq(seq(A275327(n, k),k=0..n),n=0..8);
  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[1&, (2+(#-1)/(2#^2) (1-Sqrt[1-4#^2]))/Sqrt[1-4#^2]&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
  • Sage
    # uses[riordan_array from A256893]
    s = (2+(x-1)/(2*x^2)*(1-sqrt(1-4*x^2)))/sqrt(1-4*x^2)
    riordan_array(1, s, 12)

A276666 a(n) = (n-1)*Catalan(n).

Original entry on oeis.org

-1, 0, 2, 10, 42, 168, 660, 2574, 10010, 38896, 151164, 587860, 2288132, 8914800, 34767720, 135727830, 530365050, 2074316640, 8119857900, 31810737420, 124718287980, 489325340400, 1921133836440, 7547311500300, 29667795388452, 116686713634848, 459183826803800
Offset: 0

Views

Author

Peter Luschny, Sep 12 2016

Keywords

Crossrefs

A024483 is a variant of this sequence.

Programs

  • GAP
    Concatenation([-1], List([1..30], n-> 2*Binomial(2*n-1, n+1))); # G. C. Greubel, Aug 29 2019
  • Magma
    [(n-1)*Catalan(n): n in [0..30]]; // Vincenzo Librandi, Sep 13 2016
    
  • Maple
    f := (1-3*x)/(x*sqrt(1-4*x))-1/x:
    series(f,x,29): seq(coeff(%,x,n), n=0..26);
    A276666 := n -> (n^2-1)*(2*n)!/(n+1)!^2:
    seq(A276666(n), n=0..26);
  • Mathematica
    Table[(n - 1) CatalanNumber[n], {n, 0, 30}] (* Vincenzo Librandi, Sep 13 2016 *)
  • PARI
    a(n) = if(n==0,-1, 2*binomial(2*n-1, n+1)); \\ G. C. Greubel, Aug 29 2019
    
  • Sage
    A276666 = lambda n: (n - 1) * catalan_number(n)
    [A276666(n) for n in range(27)]
    

Formula

a(n) = [x^n] (1-3*x)/(x*sqrt(1-4*x))-1/x.
a(n) = 4^n*(n-1)*hypergeom([3/2, -n], [2], 1).
a(n) = 4^n*(n-1)*JacobiP(n,1,-1/2-n,-1)/(n+1).
a(n) = (2*n)! [x^(2^n)]( BesselI(2,2*x) - (1+1/x)*BesselI(1,2*x) ).
a(n) = binomial(2*n,n) - 2*Catalan(n). (See Geoffrey Critzer's formula in A024483).
a(n) = A056040(2*n) - 2*A057977(2*n).
a(n) = A056040(2*n)*(1-2/(n+1)) = (n^2-1)*(2*n)!/(n+1)!^2.
a(n) = A232500(2*n).
a(n) = a(n-1)*2*(n-1)*(2*n-1)/((n-2)*(n+1)) for n > 2. - Chai Wah Wu, Sep 12 2016
a(n) = A024483(n+1) for n>0. - R. J. Mathar, Sep 13 2016
a(n) = A000984(n+1)-3*A000984(n). - Ezhilarasu Velayutham, Aug 27 2019
From Amiram Eldar, Mar 22 2022: (Start)
Sum_{n>=2} 1/a(n) = 5/6 - Pi/(9*sqrt(3)).
Sum_{n>=2} (-1)^n/a(n) = 26*sqrt(5)*log(phi)/25 - 7/10, where phi is the golden ratio (A001622). (End)

A189913 Triangle read by rows: T(n,k) = binomial(n, k) * k! / (floor(k/2)! * floor((k+2)/2)!).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 3, 1, 4, 6, 12, 2, 1, 5, 10, 30, 10, 10, 1, 6, 15, 60, 30, 60, 5, 1, 7, 21, 105, 70, 210, 35, 35, 1, 8, 28, 168, 140, 560, 140, 280, 14, 1, 9, 36, 252, 252, 1260, 420, 1260, 126, 126, 1, 10, 45, 360, 420, 2520, 1050, 4200, 630, 1260, 42
Offset: 0

Views

Author

Peter Luschny, May 24 2011

Keywords

Comments

The triangle may be regarded a generalization of the triangle A097610:
A097610(n,k) = binomial(n,k)*(2*k)$/(k+1);
T(n,k) = binomial(n,k)*(k)$/(floor(k/2)+1).
Here n$ denotes the swinging factorial A056040(n). As A097610 is a decomposition of the Motzkin numbers A001006, a combinatorial interpretation of T(n,k) in terms of lattice paths can be expected.
T(n,n) = A057977(n) which can be seen as extended Catalan numbers.

Examples

			[0]  1
[1]  1, 1
[2]  1, 2,  1
[3]  1, 3,  3,   3
[4]  1, 4,  6,  12,  2
[5]  1, 5, 10,  30, 10,  10
[6]  1, 6, 15,  60, 30,  60,  5
[7]  1, 7, 21, 105, 70, 210, 35, 35
		

Crossrefs

Row sums are A189912.

Programs

  • Magma
    /* As triangle */ [[Binomial(n,k)*Factorial(k)/(Factorial(Floor(k/2))*Factorial(Floor((k + 2)/2))): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jan 13 2018
  • Maple
    A189913 := (n,k) -> binomial(n,k)*(k!/iquo(k,2)!^2)/(iquo(k,2)+1):
    seq(print(seq(A189913(n,k),k=0..n)),n=0..7);
  • Mathematica
    T[n_, k_] := Binomial[n, k]*k!/((Floor[k/2])!*(Floor[(k + 2)/2])!); Table[T[n, k], {n, 0, 10}, {k, 0, n}]// Flatten (* G. C. Greubel, Jan 13 2018 *)
  • PARI
    {T(n,k) = binomial(n,k)*k!/((floor(k/2))!*(floor((k+2)/2))!) };
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jan 13 2018
    

Formula

From R. J. Mathar, Jun 07 2011: (Start)
T(n,1) = n.
T(n,2) = A000217(n-1).
T(n,3) = A027480(n-2).
T(n,4) = A034827(n). (End)

A237884 a(n) = (n!*m)/(m!*(m+1)!) where m = floor(n/2).

Original entry on oeis.org

0, 0, 1, 3, 4, 20, 15, 105, 56, 504, 210, 2310, 792, 10296, 3003, 45045, 11440, 194480, 43758, 831402, 167960, 3527160, 646646, 14872858, 2496144, 62403600, 9657700, 260757900, 37442160, 1085822640, 145422675, 4508102925, 565722720, 18668849760, 2203961430
Offset: 0

Views

Author

Peter Luschny, Feb 14 2014

Keywords

Programs

  • Maple
    A237884 := proc(n) m := iquo(n,2); (n!*m)/(m!*(m+1)!) end;
    seq(A237884(n), n = 0..34);
  • Mathematica
    CoefficientList[Series[-((-1 + Sqrt[1 - 4 x^2] -x (-1 + Sqrt[1 - 4 x^2] +
    2 x (-3 + 2 Sqrt[1 - 4 x^2] +x (3 + 4 x - 2 Sqrt[1 - 4 x^2]))))/
    (2 x^2 (1 - 4 x^2)^(3/2))), {x, 0, 30}], x] (* Benedict W. J. Irwin, Aug 15 2016 *)
    Table[(n! #)/(#! (# + 1)!) &@ Floor[n/2], {n, 0, 34}] (* Michael De Vlieger, Aug 15 2016 *)
  • Sage
    def A237884():
        r, s, n = 1, 0, 0
        while True:
            yield s
            n += 1
            r *= 4/n if is_even(n) else n
            s = r * (n//2)/(n//2+1)
    a = A237884(); [next(a) for i in range(35)]

Formula

a(2*n) = A001791(n).
a(2*n+1) = A000917(n-1).
a(n) = n^(n mod 2)*binomial(2*floor(n/2), floor(n/2)-1).
a(n) = A162246(n, n+2) = n!/((n-ceiling((n+2)/2))!*floor((n+2)/2)!) if n > 1, otherwise 0.
a(n) = A056040(n)*floor(n/2)/(floor(n/2)+1).
a(n) + A056040(n) = A057977(n).
G.f.: -((p - 1 - x*(p - 1 + 2*x*(2*p - 3 + x*(3 + 4*x - 2*p))))/(2*x^2*p^3)), where p=sqrt(1-4*x^2). - Benedict W. J. Irwin, Aug 15 2016

A275326 Triangle read by rows, T(n,k) = ceiling(A275325(n,k)/2) for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 3, 0, 2, 1, 0, 10, 5, 0, 5, 4, 1, 0, 35, 28, 7, 0, 14, 14, 6, 1, 0, 126, 126, 54, 9, 0, 42, 48, 27, 8, 1, 0, 462, 528, 297, 88, 11, 0, 132, 165, 110, 44, 10, 1, 0, 1716, 2145, 1430, 572, 130, 13, 0, 429, 572, 429, 208, 65, 12, 1
Offset: 0

Views

Author

Peter Luschny, Aug 15 2016

Keywords

Comments

An extension of the Catalan triangle A128899.

Examples

			Triangle starts:
[ n] [k=0,1,2,...] [row sum]
[ 0] [1] 1
[ 1] [0, 1] 1
[ 2] [0, 1] 1
[ 3] [0, 3] 3
[ 4] [0, 2, 1] 3
[ 5] [0, 10, 5] 15
[ 6] [0, 5, 4, 1] 10
[ 7] [0, 35, 28, 7] 70
[ 8] [0, 14, 14, 6, 1] 35
[ 9] [0, 126, 126, 54,  9] 315
[10] [0, 42, 48, 27, 8, 1] 126
[11] [0, 462, 528, 297, 88, 11] 1386
[12] [0, 132, 165, 110, 44, 10, 1] 462
		

Crossrefs

Cf. A057977, A093178, A128899, A275324 (row sums), A275325.

Programs

  • Sage
    # uses[orbital_factors]
    # Function orbital_factors is in A275325.
    def half_orbital_factors(n):
        F = orbital_factors(n)
        return [f//2 for f in F] if n >= 2 else F
    for n in (0..12): print(half_orbital_factors(n))

Formula

T(n,k) = A275325(n,k)/2 for n>=2.
T(n,1) = A057977(n) for n>=1 (the extended Catalan numbers).
For odd n: T(n,1) = Sum_{k>=0} T(n+1,k).
Main diagonal: T(n, floor(n/2)) = A093178(n).
Previous Showing 21-30 of 34 results. Next