cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A024862 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = natural numbers, t = odd natural numbers.

Original entry on oeis.org

3, 5, 17, 23, 50, 62, 110, 130, 205, 235, 343, 385, 532, 588, 780, 852, 1095, 1185, 1485, 1595, 1958, 2090, 2522, 2678, 3185, 3367, 3955, 4165, 4840, 5080, 5848, 6120, 6987, 7293, 8265, 8607, 9690, 10070, 11270, 11690, 13013, 13475, 14927, 15433, 17020, 17572, 19300
Offset: 2

Views

Author

Keywords

Crossrefs

Cf. A058187.

Programs

  • Magma
    [((2*n-1)*(2*n+1)*(2*n+3) +3*(-1)^n*(n^2+(n+1)^2))/48: n in [2..50]]; // G. C. Greubel, Apr 19 2023
    
  • Mathematica
    CoefficientList[Series[(3+2x+3x^2)/((1+x)^3 (1-x)^4), {x,0,50}], x] (* Vincenzo Librandi, Sep 25 2013 *)
  • PARI
    Vec(x^2*(3+2*x+3*x^2)/((1+x)^3*(x-1)^4) + O(x^100)) \\ Colin Barker, Jan 29 2016
    
  • SageMath
    [((2*n-1)*(2*n+1)*(2*n+3) +3*(-1)^n*(n^2+(n+1)^2))/48 for n in range(2,51)] # G. C. Greubel, Apr 19 2023

Formula

G.f.: x^2*(3+2*x+3*x^2) / ((1+x)^3*(x-1)^4). - R. J. Mathar, Sep 25 2013
a(n) = 3*A058187(n-2) + 2*A058187(n-3) + 3*A058187(n-4). - R. J. Mathar, Sep 25 2013
From Colin Barker, Jan 29 2016: (Start)
a(n) = (8*n^3 + 6*(-1)^n*n^2 + 12*n^2 + 6*(-1)^n*n - 2*n + 3*(-1)^n - 3)/48.
a(n) = (4*n^3 + 9*n^2 + 2*n)/24 for n even.
a(n) = (4*n^3 + 3*n^2 - 4*n - 3)/24 for n odd. (End)
E.g.f.: (1/48)*(3*(1 - 4*x + 2*x^2)*exp(-x) + (-3 + 18*x + 36*x^2 + 8*x^3)*exp(x)). - G. C. Greubel, Apr 19 2023

A024868 a(n) = 2*(n+1) + 3*n + ... + (k+1)*(n+2-k), where k = floor(n/2).

Original entry on oeis.org

6, 8, 22, 27, 52, 61, 100, 114, 170, 190, 266, 293, 392, 427, 552, 596, 750, 804, 990, 1055, 1276, 1353, 1612, 1702, 2002, 2106, 2450, 2569, 2960, 3095, 3536, 3688, 4182, 4352, 4902, 5091, 5700, 5909, 6580, 6810, 7546, 7798, 8602, 8877, 9752, 10051, 11000, 11324, 12350
Offset: 2

Views

Author

Keywords

Crossrefs

Apart from offset the same as A024306.

Programs

  • Magma
    [19*n/24-9/16+n^3/12+11*n^2/16+(-1)^n*(3*n/8 +9/16+n^2/16): n in [2..50]]; // Vincenzo Librandi, Sep 26 2013
    
  • Maple
    seq(sum((i+1)*(k-i+2), i=1..floor(k/2)), k=2..70); # Wesley Ivan Hurt, Sep 20 2013
  • Mathematica
    Table[Floor[n/2] (-2Floor[n/2]^2 +3n*Floor[n/2] +9n +14)/6, {n, 2, 100}] (* Wesley Ivan Hurt, Sep 20 2013 *)
    CoefficientList[Series[(6 +2x -4x^2 -x^3 +x^4)/((1+x)^3 (1-x)^4), {x, 0, 60}], x] (* Vincenzo Librandi, Sep 26 2013 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{6,8,22,27,52,61,100},50] (* Harvey P. Dale, Aug 11 2023 *)
  • SageMath
    [(1/48)*(4*n^3 +33*n^2 +38*n -27 +3*(-1)^n*(n+3)^2) for n in (2..60)] # G. C. Greubel, Jul 13 2022

Formula

a(n) = Sum_{i=1..floor(n/2)} (i+1)*(n-i+2) = floor(n/2)*(-2*floor(n/2)^2 + 3*n*floor(n/2) + 9*n + 14)/6, n>1. - Wesley Ivan Hurt, Sep 20 2013
G.f.: x^2*(6 + 2*x - 4*x^2 - x^3 + x^4) / ( (1+x)^3*(x-1)^4 ). - R. J. Mathar, Sep 25 2013
a(n) = 6*A058187(n-2) +2*A058187(n-3) -4*A058187(n-4) -A058187(n-5) +A058187(n-6). - R. J. Mathar, Sep 25 2013
a(n) = ( 4*n^3 + 33*n^2 + 38*n - 27 )/48 + (-1)^n*(n+3)^2/16. - R. J. Mathar, Sep 25 2013
E.g.f.: (1/24)*( x*(2*x^2 + 24*x + 27)*cosh(x) + (2*x^3 + 21*x^2 + 48*x - 27)*sinh(x) ). - G. C. Greubel, Jul 13 2022

A124458 Triangular array resulting from summing three repeated Pascal sequences; related to the generalized pentagonal sequence (A001318) and the classical modular tessellation (cf. A054886).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 3, 4, 2, 1, 3, 5, 5, 2, 1, 3, 7, 7, 6, 2, 1, 3, 8, 12, 9, 7, 2, 1, 3, 10, 15, 18, 11, 8, 2, 1, 3, 11, 22, 24, 25, 13, 9, 2, 1, 3, 13, 26, 40, 35, 33, 15, 10, 2, 1
Offset: 1

Views

Author

Alford Arnold, Nov 04 2006

Keywords

Comments

The third diagonal is the generalized pentagonal sequence A001318

Examples

			Consider
1.......1.......6.......6.......21......21....
........1.......1.......6.......6.......21....
................1.......1.......6.......6.....
which sums to
1.....2....8.....13....33....48....,
a diagonal of A124458
		

Crossrefs

A207974 Triangle related to A152198.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 2, 2, 1, 1, 5, 2, 4, 1, 1, 1, 6, 3, 6, 3, 2, 1, 1, 7, 3, 9, 3, 5, 1, 1, 1, 8, 4, 12, 6, 8, 4, 2, 1, 1, 9, 4, 16, 6, 14, 4, 6, 1, 1, 1, 10, 5, 20, 10, 20, 10, 10, 5, 2, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 22 2012

Keywords

Comments

Row sums are A027383(n).
Diagonal sums are alternately A014739(n) and A001911(n+1).
The matrix inverse starts
1;
-1,1;
1,-2,1;
1,-1,-1,1;
-1,2,0,-2,1;
-1,1,2,-2,-1,1;
1,-2,-1,4,-1,-2,1;
1,-1,-3,3,3,-3,-1,1;
-1,2,2,-6,0,6,-2,-2,1;
-1,1,4,-4,-6,6,4,-4,-1,1;
1,-2,-3,8,2,-12,2,8,-3,-2,1;
apparently related to A158854. - R. J. Mathar, Apr 08 2013
From Gheorghe Coserea, Jun 11 2016: (Start)
T(n,k) is the number of terms of the sequence A057890 in the interval [2^n,2^(n+1)-1] having binary weight k+1.
T(n,k) = A007318(n,k) (mod 2) and the number of odd terms in row n of the triangle is 2^A000120(n).
(End)

Examples

			Triangle begins :
n\k  [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
[0]  1;
[1]  1,  1;
[2]  1,  2,  1;
[3]  1,  3,  1,  1;
[4]  1,  4,  2,  2,  1;
[5]  1,  5,  2,  4,  1,  1;
[6]  1,  6,  3,  6,  3,  2,  1;
[7]  1,  7,  3,  9,  3,  5,  1,  1;
[8]  1,  8,  4,  12, 6,  8,  4,  2,  1;
[9]  1,  9,  4,  16, 6,  14, 4,  6,  1,  1;
[10] ...
		

Crossrefs

Cf. Diagonals : A000012, A000034, A052938, A097362
Related to thickness: A000120, A027383, A057890, A274036.

Programs

  • Maple
    A207974 := proc(n,k)
        if k = 0 then
            1;
        elif k < 0 or k > n then
            0 ;
        else
            procname(n-1,k-1)-(-1)^k*procname(n-1,k) ;
        end if;
    end proc: # R. J. Mathar, Apr 08 2013
  • PARI
    seq(N) = {
      my(t = vector(N+1, n, vector(n, k, k==1 || k == n)));
      for(n = 2, N+1, for (k = 2, n-1,
          t[n][k] = t[n-1][k-1] + (-1)^(k%2)*t[n-1][k]));
      return(t);
    };
    concat(seq(10))  \\ Gheorghe Coserea, Jun 09 2016
    
  • PARI
    P(n) = ((2+x+(n%2)*x^2) * (1+x^2)^(n\2) - 2)/x;
    concat(vector(11, n, Vecrev(P(n-1)))) \\ Gheorghe Coserea, Mar 14 2017

Formula

T(n,k) = T(n-1,k-1) - (-1)^k*T(n-1,k), k>0 ; T(n,0) = 1.
T(2n,2k) = T(2n+1,2k) = binomial(n,k) = A007318(n,k).
T(2n+1,2k+1) = A110813(n,k).
T(2n+2,2k+1) = 2*A135278(n,k).
T(n,2k) + T(n,2k+1) = A152201(n,k).
T(n,2k) = A152198(n,k).
T(n+1,2k+1) = A152201(n,k).
T(n,k) = T(n-2,k-2) + T(n-2,k).
T(2n,n) = A128014(n+1).
T(n,k) = card {p, 2^n <= A057890(p) <= 2^(n+1)-1 and A000120(A057890(p)) = k+1}. - Gheorghe Coserea, Jun 09 2016
P_n(x) = Sum_{k=0..n} T(n,k)*x^k = ((2+x+(n mod 2)*x^2)*(1+x^2)^(n\2) - 2)/x. - Gheorghe Coserea, Mar 14 2017

A263794 Number of (n+1) X (3+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nonincreasing.

Original entry on oeis.org

3, 3, 7, 7, 14, 14, 25, 25, 41, 41, 63, 63, 92, 92, 129, 129, 175, 175, 231, 231, 298, 298, 377, 377, 469, 469, 575, 575, 696, 696, 833, 833, 987, 987, 1159, 1159, 1350, 1350, 1561, 1561, 1793, 1793, 2047, 2047, 2324, 2324, 2625, 2625, 2951, 2951, 3303, 3303
Offset: 1

Views

Author

R. H. Hardin, Oct 26 2015

Keywords

Comments

Column 3 of A263799.

Examples

			Some solutions for n = 5:
  1 1 1 1    1 1 0 0    1 1 0 0    1 1 1 1    0 0 0 0
  1 1 1 1    1 1 0 0    1 1 0 0    1 1 1 1    0 0 0 0
  1 1 0 0    0 0 0 0    0 0 1 1    1 1 1 1    0 0 0 0
  1 1 0 0    0 0 0 0    0 0 1 1    1 1 1 1    0 0 0 0
  0 0 1 1    0 0 0 0    0 0 1 1    1 1 1 1    0 0 0 0
  0 0 1 1    0 0 0 0    0 0 1 1    1 1 1 1    0 0 0 0
		

Crossrefs

Formula

Empirical: a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7).
Empirical: a(n) = A058187(n-1) + floor((n+3)/2). - Filip Zaludek, Dec 14 2016
Conjectures from Colin Barker, Dec 14 2016: (Start)
a(n) = (n^3 + 6*n^2 + 32*n + 48)/48 for n even.
a(n) = (n^3 + 9*n^2 + 47*n + 87)/48 for n odd.
G.f.: x*(3 - 5*x^2 + 4*x^4 - x^6) / ((1 - x)^4*(1 + x)^3).
(End)

A308401 Number of bracelets (turnover necklaces) of length n that have no reflection symmetry and consist of 6 white beads and n-6 black beads.

Original entry on oeis.org

3, 6, 16, 30, 56, 91, 150, 224, 336, 477, 672, 912, 1233, 1617, 2112, 2700, 3432, 4290, 5340, 6552, 8008, 9678, 11648, 13888, 16503, 19448, 22848, 26658, 31008, 35853, 41346, 47424, 54264, 61803, 70224, 79464, 89733, 100947, 113344, 126840, 141680, 157780, 175416, 194480, 215280, 237708
Offset: 9

Views

Author

Petros Hadjicostas, May 24 2019

Keywords

Comments

Bracelets that have no reflection symmetry are also known as chiral bracelets.
Here, for n >= 6, a(n) is also the number of dihedral compositions of n with 6 parts that have no reflection symmetry. Taking the MacMahon conjugates of these dihedral compositions, we see that a(n) is also the number of dihedral compositions of n into n-6 parts that have no reflection symmetry.
A cyclic composition b_1 + b_2 + ... + b_k of n into k parts is an equivalent class of (linear) compositions of n into k parts (placed on a circle) such that two such (linear) compositions are equivalent iff one can be obtained from the other by a rotation. Such compositions were first studied extensively by Sommerville (1909).
A dihedral composition b_1 + b_2 + ... + b_k of n into k parts is an equivalent class of (linear) compositions of n into k parts (placed on a circle) such that two such (linear) compositions are equivalent iff one can be obtained from the other by a rotation or a reversal of order. Such compositions were studied, for example, by Knopfmacher and Robbins (2013).
Given a bracelet of length n with k white beads and n-k black beads, we may get the corresponding dihedral composition using MacMahon's correspondence: start with a white bead and count that bead and the black beads that follow (in one direction), and call that b_1; then start with the next white bead and count that one and the black beads that follow, and call that b_2; repeat this process until you reach the k-th white bead and count that one and the black beads that follow, and call that b_k. The corresponding dihedral composition is b_1 + b_2 + ... + b_k.
If in the previous paragraph (given a bracelet of length n with k white beads and n-k black beads), we replace the white beads with black beads and the black beads with white beads, we get a dihedral composition of n into n-k parts: c_1 + c_2 + ... + c_{n-k}. These two dihedral compositions (which correspond to the same bracelet) are called "conjugate" compositions. See p. 273 in Sommerville (1909) for an explanation of "conjugate" compositions in the context of cyclic compositions.
Symmetric cyclic compositions of a positive integer n were first studied by Sommerville (1909, pp. 301-304). It can be proved that the study of necklaces with reflection symmetry using beads of two colors is equivalent to the study of symmetric cyclic compositions of a positive integer. Clearly all the necklaces with reflection symmetry are all the bracelets (turnover necklaces) with reflection symmetry. See also the comments for sequences A119963, A292200, and A295925.

Examples

			Using Frank Ruskey's website (listed above) to generate bracelets of fixed content (6, 3) with string length n = 9 and alphabet size 2, we get the following A005513(n = 9) = 7 bracelets: (1) WWWWWWBBB, (2) WWWWWBWBB, (3) WWWWBWWBB, (4) WWWWBWBWB, (5) WWWBWWWBB, (6) WWWBWWBWB, and (7) WWBWWBWWB. From these, bracelets 1, 4, 5, and 7 have reflection symmetry, while bracelets 2, 3 and 6 have no reflection symmetry (and thus, a(9) = 3).
Starting with a black bead, we count that bead and how many white beads follow (in one direction), and continue this process until we count all beads around the circle. We thus use MacMahon's correspondence to get the following dihedral compositions of n = 9 into 3 parts: (1) 1 + 7 + 1, (2) 1 + 2 + 6, (3) 1 + 3 + 5, (4) 2 + 5 + 2, (5) 4 + 1 + 4, (6) 2 + 3 + 4, and (7) 3 + 3 + 3. Again, dihedral compositions 1, 4, 5, and 7 are symmetric (have reflection symmetry), while dihedral compositions 2, 3, and 6 are not symmetric (and thus, a(9) = 3).
We may also start with a white bead and count that bead and how many black beads follow (in one direction), and continue this process until we count all beads around the circle. We thus use MacMahon's correspondence again to get the following (conjugate) dihedral compositions of n = 9 into 6 parts: (1) 1 + 1 + 1 + 1 + 1 + 4, (2) 1 + 1 + 1 + 1 + 2 + 3, (3) 1 + 1 + 1 + 2 + 1 + 3, (4) 1 + 1 + 1 + 2 + 2 + 2, (5) 1 + 1 + 2 + 1 + 1 + 3, (6) 1 + 1 + 2 + 1 + 2 + 2, and (7) 1 + 2 + 1 + 2 + 1 + 2. Again, dihedral compositions 1, 4, 5, and 7 have reflection symmetries, while dihedral compositions 2, 3, and 6 do not have reflection symmetries (and thus, a(9) = 3). For example, dihedral composition 1 is symmetric because we can draw an axis of symmetry through one of the 1s and 4. In addition, dihedral composition 5 is symmetric because we may draw an axis of symmetry through the numbers 2 and 3.
		

Crossrefs

Programs

  • PARI
    a(n) = (1/12)* (sumdiv(gcd(n, 6), d,  eulerphi(d)*binomial((n/d) - 1, (6/d) - 1))) - (1/2)*binomial(floor(n/2), 3); \\ Michel Marcus, May 28 2019
    
  • PARI
    Vec(x^9*(3 + x^2 + x^3 + x^4) / ((1 - x)^6*(1 + x)^3*(1 - x + x^2)*(1 + x + x^2)^2) + O(x^50)) \\ Colin Barker, Jun 02 2019

Formula

G.f.: (x^k/2) * (-(1 + x)/(1 - x^2)^floor((k/2) + 1) + (1/k) * Sum_{m|k} phi(m)/(1 - x^m)^(k/m)) with k = 6. (This formula is due to Herbert Kociemba.)
a(n) = A005513(n) - A058187(n-6) = A005513(n) - binomial(floor(n/2), 3) for n >= 6.
a(n) = -(1/2)*binomial(floor(n/2), 3) + (1/12)* Sum_{d|gcd(n, 6)} phi(d)*binomial((n/d) - 1, (6/d) - 1) for n >= 6. (This is a modification of formulas found in Gupta (1979) and Shevelev (2004).)
From Colin Barker, May 26 2019: (Start)
G.f.: x^9*(3 + x^2 + x^3 + x^4) / ((1 - x)^6*(1 + x)^3*(1 - x + x^2)*(1 + x + x^2)^2).
a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) - a(n-4) + a(n-5) + 4*a(n-6) - 3*a(n-7) - 3*a(n-8) + 4*a(n-9) + a(n-10) - a(n-11) - 3*a(n-12) + a(n-13) + 2*a(n-14) - a(n-15) for n > 23. (End)

A339756 Mark each point on the n X n X n grid with the number of points that are visible from it; a(n) is the number of distinct values in the grid.

Original entry on oeis.org

1, 4, 4, 8, 4, 17, 12, 15, 14, 33, 12, 58, 28, 43, 52, 113, 39, 140, 57, 124, 129, 240, 66, 241, 173, 270, 217, 362, 58, 388, 292, 454, 351, 539, 166, 783, 471, 723, 463, 880, 229, 1134, 642, 843, 763, 1441, 311, 1415, 740, 1295, 987, 1888, 357, 1629, 1063, 1750, 1231, 2381, 289, 2652
Offset: 1

Views

Author

Torlach Rush, Dec 15 2020

Keywords

Comments

a(n) <= A058187(n). This is because A058187(n) is the maximum number of points required to calculate a(n).

Examples

			a(1) = 1 because there are 7 visible points from every point on the grid.
a(2) = 4 because 19 points are visible from every vertex of the grid, 23 points are visible from the midpoint of every edge of the grid, 25 points are visible from the midpoint of every face of the grid, and 26 points are visible from the middle of the grid.
a(3) = 4 because 49 points are visible from every vertex of the grid, 53 points are visible from the inner points of every edge of the grid, 55 points are visible from the inner points of every face of the grid, and 56 points are visible from the inner points of the grid.
		

Crossrefs

Programs

  • PARI
    \\ n = side length, d = dimension
    cdvps(n, d) ={my(m=Map());
      forvec(u=vector(d, i, [0, n\2]),
        my(c=0); forvec(v=[[t-n, t]|t<-u], c+=(gcd(v)==1));
        mapput(m, c, 1), 1);
      #m; }
    a(n) = cdvps(n, 3)

A024869 a(n) = s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n-k+1), where k = floor( n/2 ), s = natural numbers >= 2, t = natural numbers >= 3.

Original entry on oeis.org

8, 10, 27, 32, 61, 70, 114, 128, 190, 210, 293, 320, 427, 462, 596, 640, 804, 858, 1055, 1120, 1353, 1430, 1702, 1792, 2106, 2210, 2569, 2688, 3095, 3230, 3688, 3840, 4352, 4522, 5091, 5280, 5909, 6118, 6810, 7040, 7798, 8050, 8877, 9152, 10051, 10350, 11324, 11648
Offset: 2

Views

Author

Keywords

Programs

  • Mathematica
    CoefficientList[Series[(8 + 2 x - 7 x^2 - x^3 + 2 x^4)/((1 + x)^3 (x - 1)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 25 2013 *)
  • PARI
    Vec(x^2*(8+2*x-7*x^2-x^3+2*x^4)/((1+x)^3*(x-1)^4) + O(x^100)) \\ Colin Barker, Jan 29 2016

Formula

G.f.: x^2*(8+2*x-7*x^2-x^3+2*x^4) / ((1+x)^3*(x-1)^4). - R. J. Mathar, Sep 25 2013
a(n) = 8*A058187(n-2) +2*A058187(n-3) -7*A058187(n-4) -A058187(n-5) +2*A058187(n-6). - R. J. Mathar, Sep 25 2013
From Colin Barker, Jan 29 2016: (Start)
a(n) = (4*n^3+3*((-1)^n+13)*n^2+4*(6*(-1)^n+17)*n+42*((-1)^n-1))/48.
a(n) = (2*n^3+21*n^2+46*n)/24 for n even.
a(n) = (2*n^3+18*n^2+22*n-42)/24 for n odd.
(End)

A024875 a(n) = s(1)s(n) + s(2)s(n-1) + ... + s(k)s(n-k+1), where k = floor( n/2 ), s = natural numbers >= 3.

Original entry on oeis.org

12, 15, 38, 45, 82, 94, 148, 166, 240, 265, 362, 395, 518, 560, 712, 764, 948, 1011, 1230, 1305, 1562, 1650, 1948, 2050, 2392, 2509, 2898, 3031, 3470, 3620, 4112, 4280, 4828, 5015, 5622, 5829, 6498, 6726, 7460, 7710, 8512, 8785, 9658, 9955, 10902, 11224, 12248, 12596
Offset: 2

Views

Author

Keywords

Programs

  • Mathematica
    CoefficientList[Series[(12 + 3 x - 13 x^2 - 2 x^3 + 4 x^4)/((1 + x)^3 (x - 1)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 25 2013 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{12,15,38,45,82,94,148},50] (* Harvey P. Dale, Jul 21 2015 *)
  • PARI
    Vec(x^2*(12+3*x-13*x^2-2*x^3+4*x^4)/((1+x)^3*(x-1)^4) + O(x^100)) \\ Colin Barker, Jan 29 2016

Formula

G.f.: x^2*(12+3*x-13*x^2-2*x^3+4*x^4) / ((1+x)^3*(x-1)^4). - R. J. Mathar, Sep 25 2013
a(n) = 12*A058187(n-2) +3*A058187(n-3) -13*A058187(n-4) -2*A058187(n-5) +4*A058187(n-6). - R. J. Mathar, Sep 25 2013
From Colin Barker, Jan 29 2016: (Start)
a(n) = (4*n^3+3*((-1)^n+19)*n^2+2*(15*(-1)^n+61)*n+75*((-1)^n-1))/48.
a(n) = (2*n^3+30*n^2+76*n)/24 for n even.
a(n) = (2*n^3+27*n^2+46*n-75)/24 for n odd. (End)

A093039 Sequence resulting from a sum of three repeated binomial(n+3,4) sequences.

Original entry on oeis.org

1, 2, 7, 11, 25, 35, 65, 85, 140, 175, 266, 322, 462, 546, 750, 870, 1155, 1320, 1705, 1925, 2431, 2717, 3367, 3731, 4550, 5005, 6020, 6580, 7820, 8500, 9996, 10812, 12597, 13566, 15675, 16815, 19285, 20615, 23485, 25025, 28336, 30107, 33902
Offset: 1

Views

Author

Alford Arnold, May 08 2004

Keywords

Comments

Euler transform of length 3 sequence [2,k,-1] with k=4 (cf. A028724 for k=3). - Georg Fischer, Nov 28 2020

Examples

			b(n) = 1,  1,  5,  5, 15, 15, 35, 35, 70, 70,126,126
     + 0,  1,  1,  5,  5, 15, 15, 35, 35, 70, 70,126
     + 0,  0,  1,  1,  5,  5, 15, 15, 35, 35, 70, 70
     -----------------------------------------------
a(n) = 1,  2,  7, 11, 25, 35, 65, 85,140,175,266,322
		

Crossrefs

Cf. A001651(k=1), A001318(k=2), A028724(k=3).
Cf. repeated binomial coefficients: A008805(k=2), A058187(k=3), A189976(k=4).

Programs

  • Mathematica
    k := 4; nmax := 32; a := Flatten[Table[{Binomial[n,k], Binomial[n,k]},{n,k,nmax}]];
    a + Flatten[Join[{0}, Drop[a,-1]]] + Flatten[Join[{0,0}, Drop[a,-2]]] (* Georg Fischer, Nov 29 2020 *)

Formula

a(1) = b(1), a(2) = b(2), a(n) = b(n) + b(n-1) + b(n-2) for n > 2, where k = 4 and b(n) = binomial(floor((n+7)/2), k) = A189976(n-7).

Extensions

More terms from and edited by Georg Fischer, Nov 28 2020
Previous Showing 21-30 of 31 results. Next