cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A109103 Smallest a(n) such that a(n)! can be expressed as the product of smaller factorials, using n distinct factorials greater than 1 (with repetitions allowed).

Original entry on oeis.org

4, 9, 288, 34560
Offset: 2

Views

Author

Jud McCranie, Jun 19 2005

Keywords

Examples

			34560! = 2! * 3! * 4! * 5! * 34559!, using five different factorials, so a(5)=34560.
		

Crossrefs

A101977 Number of products of distinct factorials not exceeding n!.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 15, 22, 31, 43, 58, 74, 97, 131, 171, 222, 277, 349, 447, 564, 698, 868, 1074, 1321, 1601, 1967, 2398, 2911, 3513, 4235, 5083, 6071, 7242, 8637, 10229, 12102, 14293, 16848, 19802, 23271, 27276, 31846, 37132, 43196, 50191, 58238, 67425, 77946
Offset: 1

Views

Author

Jonathan Sondow, Dec 22 2004

Keywords

Comments

a(n) is the position of n! in A058295 (products of distinct factorials). a(n) < A101976(n) for n > 2 and a(n) > A101978(n) for n > 10.

Examples

			a(4) = 5 because 5 products of distinct factorials do not exceed 4!, namely, 1, 2, 6, 12 and 24.
		

Crossrefs

Programs

  • Mathematica
    d[k_] := (m=1; With[{p=With[{s=Subsets[Table[n!, {n, k}]]}, Sort[Table[Apply[Times, s[[n]]], {n, Length[s]}]]]}, While[p[[m]]<=k!, m++ ]; Length[Union[Take[p, m-1]]]]);Table[d[k], {k, 19}]

Extensions

a(20)-a(48) from Donovan Johnson, May 30 2012

A216152 A205957(n) where n is a nonprime number.

Original entry on oeis.org

1, 2, 12, 48, 144, 1440, 34560, 483840, 7257600, 58060800, 3135283200, 125411328000, 2633637888000, 57940033536000, 5562243219456000, 27811216097280000, 723091618529280000, 6507824566763520000, 364438175738757120000, 327994358164881408000000
Offset: 1

Views

Author

Peter Luschny, Sep 02 2012

Keywords

Comments

The distinct values of A205957. Partial products of A216153.
a(1),...,a(10) are highly totient numbers (A097942) and products of distinct factorials (A058295). The author conjectures that this is true in general.

Crossrefs

Cf. A051451.

Programs

  • Mathematica
    A205957[n_] := Exp[-Sum[MoebiusMu[p] Log[k/p], {k, 1, n}, {p, FactorInteger[k][[All, 1]]}]];
    Table[A205957[n], {n, 0, 30}] // DeleteDuplicates (* Jean-François Alcover, Jul 08 2019 *)
  • Sage
    # sorted(list(set([A205957(n) for n in (0..31)])))
    def A216152_list(n) :
        C = filter(lambda k: not is_prime(k), (1..n))
        return [A205957(c) for c in C]
    A216152_list(31)

Formula

a(n) = A205957(A018252(n)).

A334174 Numbers that can be written as a product of two or more consecutive factorial numbers.

Original entry on oeis.org

1, 2, 12, 144, 288, 2880, 17280, 34560, 86400, 2073600, 3628800, 12441600, 24883200, 203212800, 435456000, 10450944000, 14631321600, 62705664000, 125411328000, 146313216000, 1316818944000, 17557585920000, 73741860864000, 144850083840000, 421382062080000
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 17 2020

Keywords

Examples

			    1 = 0! * 1!;
    2 = 1! * 2!;
   12 = 2! * 3!;
  144 = 3! * 4!;
  288 = 2! * 3! * 4!.
		

Crossrefs

A109104 Numbers n such that n! can be expressed as the product of the factorials of prime numbers, repetitions allowed.

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 24, 32, 48, 72, 128, 192, 240, 384, 432, 480, 720, 864, 1152, 1440, 2592, 2880, 5040, 6144, 6912, 8192, 10080, 11520, 15360, 15552, 23040, 25920, 27648, 51840, 62208, 69120, 73728, 86400
Offset: 1

Views

Author

Jud McCranie, Jun 19 2005

Keywords

Examples

			10! = 3! * 5! * 7!, so 10 is in the sequence.
		

Crossrefs

A255937 Number of distinct products of distinct factorials up to n!.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 28, 56, 108, 204, 332, 664, 1114, 2228, 4078, 7018, 11402, 22804, 40638, 81276, 140490, 230328, 391544, 783088, 1287034, 2273676, 3903626, 6837760, 10368184, 20736368, 34081198, 68162396
Offset: 0

Views

Author

Keywords

Examples

			a(3) = |{1!, 2!, 3!, 2!*3!}| = |{1, 2, 6, 12}| = 4.
		

Crossrefs

Programs

  • Maple
    s:= proc(n) option remember; (f-> `if`(n=0, {f},
          map(x-> [x, x*f][], s(n-1))))(n!)
        end:
    a:= n-> nops(s(n)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 16 2015
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, If[PrimeQ[n], 2 a[n-1], Times @@@ ((Subsets[Range[n]] // Rest) /. k_Integer -> k!) // Union // Length]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 23}] (* Jean-François Alcover, May 01 2022 *)
  • PARI
    a(n)=my(v=[1],N=n!); for(k=2,n-1, v=Set(concat(v,v*k!))); #v + sum(i=1,#v, !setsearch(v,N*v[i]))

Formula

Erdős and Graham prove that log a(n) ~ n log log n/log n.
a(p) = 2*a(p-1) for prime p. - Jon E. Schoenfield, Apr 01 2015

Extensions

More terms from Alois P. Heinz, Mar 16 2015
a(31) (=2*a(30)) from Jon E. Schoenfield, Apr 01 2015

A309841 If n = Sum (2^e_k) then a(n) = Product ((e_k + 2)!).

Original entry on oeis.org

1, 2, 6, 12, 24, 48, 144, 288, 120, 240, 720, 1440, 2880, 5760, 17280, 34560, 720, 1440, 4320, 8640, 17280, 34560, 103680, 207360, 86400, 172800, 518400, 1036800, 2073600, 4147200, 12441600, 24883200, 5040, 10080, 30240, 60480, 120960, 241920, 725760, 1451520, 604800
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 19 2019

Keywords

Examples

			21 = 2^0 + 2^2 + 2^4 so a(21) = 2! * 4! * 6! = 34560.
		

Crossrefs

Programs

  • Maple
    a:= n-> (l-> mul((i+1)!^l[i], i=1..nops(l)))(convert(n, base, 2)):
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 10 2020
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 + (k + 2)! x^(2^k)), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := (Floor[Log[2, n]] + 2)! a[n - 2^Floor[Log[2, n]]]; Table[a[n], {n, 0, 40}]
  • PARI
    a(n)={vecprod([(k+1)! | k<-Vec(select(b->b, Vecrev(digits(n, 2)), 1))])} \\ Andrew Howroyd, Aug 19 2019

Formula

G.f.: Product_{k>=0} (1 + (k + 2)! * x^(2^k)).
a(0) = 1; a(n) = (floor(log_2(n)) + 2)! * a(n - 2^floor(log_2(n))).
a(2^(k-1)-1) = A000178(k).

A356639 Number of integer sequences b with b(1) = 1, b(m) > 0 and b(m+1) - b(m) > 0, of length n which transform under the map S into a nonnegative integer sequence. The transform c = S(b) is defined by c(m) = Product_{k=1..m} b(k) / Product_{k=2..m} (b(k) - b(k-1)).

Original entry on oeis.org

1, 1, 3, 17, 155, 2677, 73327, 3578339, 329652351
Offset: 1

Views

Author

Thomas Scheuerle, Aug 19 2022

Keywords

Comments

This sequence can be calculated by a recursive algorithm:
Let B1 be an array of finite length, the "1" denotes that it is the first generation. Let B1' be the reversed version of B1. Let C be the element-wise product C = B1 * B1'. Then B2 is a concatenation of taking each element of B1 and add all divisors of the corresponding element in C. If we start with B1 = {1} then we get this sequence of arrays: B2 = {2}, B3 = {3, 4, 6}, ... . a(n) is the length of the array Bn. In short the length of Bn+1 and so a(n+1) is the sum over A000005(Bn * Bn').
The transform used in the definition of this sequence is its own inverse, so if c = S(b) then b = S(c). The eigensequence is 2^n = S(2^n).
There exist some transformation pairs of infinite sequences in the database:
A026549 <--> A038754; A100071 <--> A001405; A058295 <--> A------;
A111286 <--> A098011; A093968 <--> A205825; A166447 <--> A------;
A079352 <--> A------; A082458 <--> A------; A008233 <--> A264635;
A138278 <--> A------; A006501 <--> A264557; A336496 <--> A------;
A019464 <--> A------; A062112 <--> A------; A171647 <--> A359039;
A279312 <--> A------; A031923 <--> A------.
These transformation pairs are conjectured:
A137326 <--> A------; A066332 <--> A300902; A208147 <--> A308546;
A057895 <--> A------; A349080 <--> A------; A019442 <--> A------;
A349079 <--> A------.
("A------" means not yet in the database.)
Some sequences in the lists above may need offset adjustment to force a beginning with 1,2,... in the transformation.
If we allowed signed rational numbers, further interesting transformation pairs could be observed. For example, 1/n will transform into factorials with alternating sign. 2^(-n) transforms into ones with alternating sign and 1/A000045(n) into A000045 with alternating sign.

Examples

			a(4) = 17. The 17 transformation pairs of length 4 are:
  {1, 2, 3, 4}  = S({1, 2, 6, 24}).
  {1, 2, 3, 5}  = S({1, 2, 6, 15}).
  {1, 2, 3, 6}  = S({1, 2, 6, 12}).
  {1, 2, 3, 9}  = S({1, 2, 6, 9}).
  {1, 2, 3, 12} = S({1, 2, 6, 8}).
  {1, 2, 3, 21} = S({1, 2, 6, 7}).
  {1, 2, 4, 5}  = S({1, 2, 4, 20}).
  {1, 2, 4, 6}  = S({1, 2, 4, 12}).
  {1, 2, 4, 8}  = S({1, 2, 4, 8}).
  {1, 2, 4, 12} = S({1, 2, 4, 6}).
  {1, 2, 4, 20} = S({1, 2, 4, 5}).
  {1, 2, 6, 7}  = S({1, 2, 3, 21}).
  {1, 2, 6, 8}  = S({1, 2, 3, 12}).
  {1, 2, 6, 9}  = S({1, 2, 3, 9}).
  {1, 2, 6, 12} = S({1, 2, 3, 6}).
  {1, 2, 6, 15} = S({1, 2, 3, 5}).
  {1, 2, 6, 24} = S({1, 2, 3, 4}).
b(1) = 1 by definition, b(2) = 1+1 as 1 has only 1 as divisor.
a(3) = A000005(b(2)*b(2)) = 3.
The divisors of b(2) are 1,2,4. So b(3) can be b(2)+1, b(2)+2 and b(2)+4.
a(4) = A000005((b(2)+1)*(b(2)+4)) + A000005((b(2)+2)*(b(2)+2)) + A000005((b(2)+4)*(b(2)+1)) = 17.
		

Crossrefs

Previous Showing 11-18 of 18 results.