cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 59 results. Next

A372589 Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is even.

Original entry on oeis.org

3, 4, 5, 9, 12, 13, 14, 16, 17, 20, 22, 23, 25, 30, 31, 35, 36, 37, 38, 39, 42, 43, 48, 49, 52, 53, 54, 56, 57, 58, 61, 63, 64, 66, 67, 68, 69, 73, 75, 77, 80, 82, 83, 85, 88, 90, 92, 93, 94, 97, 99, 100, 102, 103, 109, 110, 115, 118, 119, 120, 121, 123, 124
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The odd version is A372588.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
        {1,2}   3  (2)
          {3}   4  (1,1)
        {1,3}   5  (3)
        {1,4}   9  (2,2)
        {3,4}  12  (2,1,1)
      {1,3,4}  13  (6)
      {2,3,4}  14  (4,1)
          {5}  16  (1,1,1,1)
        {1,5}  17  (7)
        {3,5}  20  (3,1,1)
      {2,3,5}  22  (5,1)
    {1,2,3,5}  23  (9)
      {1,4,5}  25  (3,3)
    {2,3,4,5}  30  (3,2,1)
  {1,2,3,4,5}  31  (11)
      {1,2,6}  35  (4,3)
        {3,6}  36  (2,2,1,1)
      {1,3,6}  37  (12)
      {2,3,6}  38  (8,1)
    {1,2,3,6}  39  (6,2)
      {2,4,6}  42  (4,2,1)
    {1,2,4,6}  43  (14)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372587, complement A372586.
For minimum (A372437) we have A372440, complement A372439.
For length (A372441, zeros A071814) we have A372591, complement A372590.
Positions of even terms in A372442, zeros A372436.
The complement is A372588.
For just binary indices:
- length: A001969, complement A000069
- sum: A158704, complement A158705
- minimum: A036554, complement A003159
- maximum: A053754, complement A053738
For just prime indices:
- length: A026424 A028260 (count A027187), complement (count A027193)
- sum: A300061 (count A058696), complement A300063 (count A058695)
- minimum: A340933 (count A026805), complement A340932 (count A026804)
- maximum: A244990 (count A027187), complement A244991 (count A027193)
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031215 lists even-indexed primes, odd A031368.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    Select[Range[2,100],EvenQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&]

Formula

Numbers k such that A070939(k) + A061395(k) is even.

A372590 Numbers whose binary weight (A000120) plus bigomega (A001222) is odd.

Original entry on oeis.org

1, 3, 4, 5, 12, 14, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 29, 30, 35, 38, 43, 45, 48, 49, 53, 55, 56, 62, 63, 64, 66, 68, 69, 71, 72, 74, 75, 78, 80, 81, 82, 83, 84, 87, 88, 89, 91, 92, 93, 94, 99, 100, 101, 102, 104, 105, 108, 113, 114, 115, 116, 118, 120
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

The even version is A372591.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
        {1}   1  ()
      {1,2}   3  (2)
        {3}   4  (1,1)
      {1,3}   5  (3)
      {3,4}  12  (2,1,1)
    {2,3,4}  14  (4,1)
        {5}  16  (1,1,1,1)
      {1,5}  17  (7)
      {2,5}  18  (2,2,1)
      {3,5}  20  (3,1,1)
    {1,3,5}  21  (4,2)
    {2,3,5}  22  (5,1)
  {1,2,3,5}  23  (9)
    {1,4,5}  25  (3,3)
    {2,4,5}  26  (6,1)
  {1,2,4,5}  27  (2,2,2)
  {1,3,4,5}  29  (10)
  {2,3,4,5}  30  (3,2,1)
    {1,2,6}  35  (4,3)
    {2,3,6}  38  (8,1)
  {1,2,4,6}  43  (14)
  {1,3,4,6}  45  (3,2,2)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372586, complement A372587.
For minimum (A372437) we have A372439, complement A372440.
Positions of odd terms in A372441, zeros A071814.
For maximum (A372442, zeros A372436) we have A372588, complement A372589.
The complement is A372591.
For just binary indices:
- length: A000069, complement A001969
- sum: A158705, complement A158704
- minimum: A003159, complement A036554
- maximum: A053738, complement A053754
For just prime indices:
- length: A026424 (count A027193), complement A028260 (count A027187)
- sum: A300063 (count A058695), complement A300061 (count A058696)
- minimum: A340932 (count A026804), complement A340933 (count A026805)
- maximum: A244991 (count A027193), complement A244990 (count A027187)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    Select[Range[100],OddQ[DigitCount[#,2,1]+PrimeOmega[#]]&]

A356934 Number of multisets of odd-size multisets whose multiset union is a size-n multiset covering an initial interval with weakly decreasing multiplicities.

Original entry on oeis.org

1, 1, 2, 6, 17, 46, 166, 553, 2093
Offset: 0

Views

Author

Gus Wiseman, Sep 09 2022

Keywords

Examples

			The a(1) = 1 through a(4) = 17 multiset partitions:
  {{1}}  {{1},{1}}  {{1,1,1}}      {{1},{1,1,1}}
         {{1},{2}}  {{1,1,2}}      {{1},{1,1,2}}
                    {{1,2,3}}      {{1},{1,2,2}}
                    {{1},{1},{1}}  {{1},{1,2,3}}
                    {{1},{1},{2}}  {{1},{2,3,4}}
                    {{1},{2},{3}}  {{2},{1,1,1}}
                                   {{2},{1,1,2}}
                                   {{2},{1,1,3}}
                                   {{2},{1,3,4}}
                                   {{3},{1,1,2}}
                                   {{3},{1,2,4}}
                                   {{4},{1,2,3}}
                                   {{1},{1},{1},{1}}
                                   {{1},{1},{1},{2}}
                                   {{1},{1},{2},{2}}
                                   {{1},{1},{2},{3}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

A000041 counts integer partitions, strict A000009.
A000670 counts patterns, ranked by A333217, necklace A019536.
A011782 counts multisets covering an initial interval.
Odd-size multisets are counted by A000302, A027193, A058695, ranked by A026424.
Other conditions: A035310, A063834, A330783, A356938, A356943, A356954.
Other types: A050330, A356932, A356933, A356935.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[Join@@mps/@strnorm[n],OddQ[Times@@Length/@#]&]],{n,0,5}]

A372587 Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is even.

Original entry on oeis.org

6, 7, 10, 11, 13, 14, 18, 19, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 49, 50, 52, 56, 57, 58, 62, 69, 70, 72, 74, 75, 76, 77, 82, 83, 85, 86, 87, 88, 90, 92, 96, 98, 100, 102, 103, 104, 106, 107, 108, 109, 112, 117, 120, 123
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The odd version is A372586.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
            {2,3}   6  (2,1)
          {1,2,3}   7  (4)
            {2,4}  10  (3,1)
          {1,2,4}  11  (5)
          {1,3,4}  13  (6)
          {2,3,4}  14  (4,1)
            {2,5}  18  (2,2,1)
          {1,2,5}  19  (8)
          {2,3,5}  22  (5,1)
        {1,2,3,5}  23  (9)
            {4,5}  24  (2,1,1,1)
          {1,4,5}  25  (3,3)
          {2,4,5}  26  (6,1)
        {1,2,4,5}  27  (2,2,2)
          {3,4,5}  28  (4,1,1)
        {2,3,4,5}  30  (3,2,1)
      {1,2,3,4,5}  31  (11)
            {1,6}  33  (5,2)
            {2,6}  34  (7,1)
          {1,2,6}  35  (4,3)
          {1,3,6}  37  (12)
          {2,3,6}  38  (8,1)
		

Crossrefs

Positions of even terms in A372428, zeros A372427.
For minimum (A372437) we have A372440, complement A372439.
For length (A372441, zeros A071814) we have A372591, complement A372590.
For maximum (A372442, zeros A372436) we have A372589, complement A372588.
The complement is A372586.
For just binary indices:
- length: A001969, complement A000069
- sum: A158704, complement A158705
- minimum: A036554, complement A003159
- maximum: A053754, complement A053738
For just prime indices:
- length: A026424 A028260 (count A027187), complement (count A027193)
- sum: A300061 (count A058696), complement A300063 (count A058695)
- minimum: A340933 (count A026805), complement A340932 (count A026804)
- maximum: A244990 (count A027187), complement A244991 (count A027193)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],EvenQ[Total[bix[#]]+Total[prix[#]]]&]

Formula

Numbers k such that A029931(k) + A056239(k) is even.

A356933 Number of multisets of multisets, each of odd size, whose multiset union is a size-n multiset covering an initial interval.

Original entry on oeis.org

1, 1, 2, 8, 28, 108, 524, 2608, 14176, 86576, 550672, 3782496, 27843880, 214071392, 1751823600, 15041687664, 134843207240, 1269731540864, 12427331494304, 126619822952928, 1341762163389920, 14712726577081248, 167209881188545344, 1963715680476759040, 23794190474350155856
Offset: 0

Views

Author

Gus Wiseman, Sep 08 2022

Keywords

Examples

			The a(4) = 28 multiset partitions:
  {1}{111}      {1}{112}      {1}{123}      {1}{234}
  {1}{1}{1}{1}  {1}{122}      {1}{223}      {2}{134}
                {1}{222}      {1}{233}      {3}{124}
                {2}{111}      {2}{113}      {4}{123}
                {2}{112}      {2}{123}      {1}{2}{3}{4}
                {2}{122}      {2}{133}
                {1}{1}{1}{2}  {3}{112}
                {1}{1}{2}{2}  {3}{122}
                {1}{2}{2}{2}  {3}{123}
                              {1}{1}{2}{3}
                              {1}{2}{2}{3}
                              {1}{2}{3}{3}
		

Crossrefs

A000041 counts integer partitions, strict A000009.
A000670 counts patterns, ranked by A333217, necklace A019536.
A011782 counts multisets covering an initial interval.
Odd-size multisets are counted by A000302, A027193, A058695, ranked by A026424.
Other conditions: A034691, A116540, A255906, A356937, A356942.
Other types: A050330, A356932, A356934, A356935.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@mps/@allnorm[n],OddQ[Times@@Length/@#]&]],{n,0,5}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    R(n,k) = {EulerT(vector(n, j, if(j%2 == 1, binomial(j+k-1, j))))}
    seq(n) = {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Jan 01 2023

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jan 01 2023

A349150 Heinz numbers of integer partitions with at most one odd part.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 11, 13, 14, 15, 17, 18, 19, 21, 23, 26, 27, 29, 31, 33, 35, 37, 38, 39, 41, 42, 43, 45, 47, 49, 51, 53, 54, 57, 58, 59, 61, 63, 65, 67, 69, 71, 73, 74, 77, 78, 79, 81, 83, 86, 87, 89, 91, 93, 95, 97, 98, 99, 101, 103, 105, 106, 107, 109
Offset: 1

Views

Author

Gus Wiseman, Nov 10 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with at most one odd prime index.
Also Heinz numbers of partitions with conjugate alternating sum <= 1.

Examples

			The terms and their prime indices begin:
      1: {}          23: {9}         49: {4,4}
      2: {1}         26: {1,6}       51: {2,7}
      3: {2}         27: {2,2,2}     53: {16}
      5: {3}         29: {10}        54: {1,2,2,2}
      6: {1,2}       31: {11}        57: {2,8}
      7: {4}         33: {2,5}       58: {1,10}
      9: {2,2}       35: {3,4}       59: {17}
     11: {5}         37: {12}        61: {18}
     13: {6}         38: {1,8}       63: {2,2,4}
     14: {1,4}       39: {2,6}       65: {3,6}
     15: {2,3}       41: {13}        67: {19}
     17: {7}         42: {1,2,4}     69: {2,9}
     18: {1,2,2}     43: {14}        71: {20}
     19: {8}         45: {2,2,3}     73: {21}
     21: {2,4}       47: {15}        74: {1,12}
		

Crossrefs

The case of no odd parts is A066207, counted by A000041 up to 0's.
Requiring all odd parts gives A066208, counted by A000009.
These partitions are counted by A100824, even-length case A349149.
These are the positions of 0's and 1's in A257991.
The conjugate partitions are ranked by A349151.
The case of one odd part is A349158, counted by A000070 up to 0's.
A056239 adds up prime indices, row sums of A112798.
A122111 is a representation of partition conjugation.
A300063 ranks partitions of odd numbers, counted by A058695 up to 0's.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A325698 ranks partitions with as many even as odd parts, counted by A045931.
A340932 ranks partitions whose least part is odd, counted by A026804.
A345958 ranks partitions with alternating sum 1.
A349157 ranks partitions with as many even parts as odd conjugate parts.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[Reverse[primeMS[#]],_?OddQ]<=1&]

Formula

Union of A066207 (no odd parts) and A349158 (one odd part).

A362558 Number of integer partitions of n without a nonempty initial consecutive subsequence summing to n/2.

Original entry on oeis.org

1, 1, 1, 3, 2, 7, 6, 15, 11, 30, 27, 56, 44, 101, 93, 176, 149, 297, 271, 490, 432, 792, 744, 1255, 1109, 1958, 1849, 3010, 2764, 4565, 4287, 6842, 6328, 10143, 9673, 14883, 13853, 21637, 20717, 31185, 29343, 44583, 42609, 63261, 60100, 89134, 85893, 124754
Offset: 0

Views

Author

Gus Wiseman, Apr 24 2023

Keywords

Comments

Also the number of n-multisets of positive integers that (1) have integer median, (2) cover an initial interval, and (3) have weakly decreasing multiplicities.

Examples

			The a(1) = 1 through a(7) = 15 partitions:
  (1)  (2)  (3)    (4)   (5)      (6)     (7)
            (21)   (31)  (32)     (42)    (43)
            (111)        (41)     (51)    (52)
                         (221)    (222)   (61)
                         (311)    (411)   (322)
                         (2111)   (2211)  (331)
                         (11111)          (421)
                                          (511)
                                          (2221)
                                          (3211)
                                          (4111)
                                          (22111)
                                          (31111)
                                          (211111)
                                          (1111111)
The partition y = (3,2,1,1,1) has nonempty initial consecutive subsequences (3,2,1,1,1), (3,2,1,1), (3,2,1), (3,2), (3), with sums 8, 7, 6, 5, 3. Since 4 is missing, y is counted under a(8).
		

Crossrefs

The odd bisection is A058695.
The version for compositions is A213173.
The complement is counted by A322439 aerated.
The even bisection is A362051.
For mean instead of median we have A362559.
A000041 counts integer partitions, strict A000009.
A325347 counts partitions with integer median, complement A307683.
A359893/A359901/A359902 count partitions by median.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MemberQ[Accumulate[#],n/2]&]],{n,0,15}]

A249543 Square array T(m,n) of integer partitions with m addends n+1, read by antidiagonals.

Original entry on oeis.org

1, 2, 3, 4, 9, 7, 6, 20, 26, 15, 10, 40, 72, 68, 30, 14, 75, 171, 220, 159, 56, 21, 133, 379, 614, 603, 352, 101, 29, 229, 786, 1559, 1928, 1525, 732, 176, 41, 383, 1568, 3700, 5564, 5534, 3618, 1465, 297
Offset: 1

Views

Author

Tilman Piesk, Oct 31 2014

Keywords

Comments

T(m,n) is the integer partition with m times the addend n+1 (and no other non-one addends) given as index number of A194602.
The entries in the array A249544 are also in the sequence A194602. This array T contains the index numbers of A194602 corresponding to the entries of that array: A194602(T(m,n)) = A249544(m,n).
Row 1 is A000065, column 1 is A058695 (both with shifted index).

Examples

			T(5,2) = 159.
A194602(159) = 14043. (So A249544(5,2) = 14043.)
14043 in binary is 11011011011011. That corresponds to the integer partition with 5 times the addend 3. (See row 159 in "Table for A194602" link.)
Array begins:
   n    1    2    3    4    5    6    7   8   9
m
1       1    2    4    6   10   14   21  29  41
2       3    9   20   40   75  133  229 383
3       7   26   72  171  379  786 1568
4      15   68  220  614 1559 3700
5      30  159  603 1928 5564
6      56  352 1525 5534
7     101  732 3618
8     176 1465
9     297
		

Crossrefs

Formula

A194602(T(m,n)) = A249544(m,n).
T(1,n) = A000065(n+1) = p(n+1) - 1.
T(2,n) = p(2*(n+1)) - 2.
T(3,n) = p(3*(n+1)) - floor((n+1)/2) - 3.
T(m,1) = A058695(m-1) = p(2n-1).
p is the sequence of partition numbers A000041. (See "Identities for A194602" link.)

A342081 Numbers without an inferior odd divisor > 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 26, 28, 29, 31, 32, 34, 37, 38, 41, 43, 44, 46, 47, 52, 53, 58, 59, 61, 62, 64, 67, 68, 71, 73, 74, 76, 79, 82, 83, 86, 88, 89, 92, 94, 97, 101, 103, 104, 106, 107, 109, 113, 116, 118, 122, 124
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2021

Keywords

Comments

We define a divisor d|n to be inferior if d <= n/d. Inferior divisors are counted by A038548 and listed by A161906.
Numbers n such that n is either a power of 2 or has a single odd prime factor > sqrt(n). Equivalently, numbers n such that all odd prime factors are > sqrt(n). - Chai Wah Wu, Mar 08 2021

Examples

			The divisors > 1 of 72 are {2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72}, of which {3, 9} are odd and {2, 3, 4, 6, 8} are inferior, with intersection {3}, so 72 is not in the sequence.
		

Crossrefs

The strictly inferior version is the same with A001248 added.
Positions of 1's in A069288.
The superior version is A116882, with complement A116883.
The complement is A342082.
A006530 selects the greatest prime factor.
A020639 selects the smallest prime factor.
A038548 counts superior (or inferior) divisors, with strict case A056924.
- Odd -
A000009 counts partitions into odd parts, ranked by A066208.
A001227 counts odd divisors.
A026424 lists numbers with odd Omega.
A027193 counts odd-length partitions.
A058695 counts partitions of odd numbers.
A067659 counts strict partitions of odd length, ranked by A030059.
A340101 counts factorizations into odd factors; A340102 also has odd length.
A340854/A340855 cannot/can be factored with odd minimum factor.
A341594 counts strictly superior odd divisors
A341675 counts superior odd divisors.
- Inferior: A033676, A066839, A161906.
- Strictly Inferior A333805, A341674.
- Strictly Superior: A064052/A048098, A341645/A341646.

Programs

  • Mathematica
    Select[Range[100],Function[n,Select[Divisors[n]//Rest,OddQ[#]&&#<=n/#&]=={}]]
  • PARI
    is(n) = #select(x -> x > 2 && x^2 <= n, factor(n)[, 1]) == 0; \\ Amiram Eldar, Nov 01 2024
  • Python
    from sympy import primefactors
    A342081_list = [n for n in range(1,10**3) if len([p for p in primefactors(n) if p > 2 and p*p <= n]) == 0] # Chai Wah Wu, Mar 08 2021
    

A371839 Number of integer partitions of n with biquanimous multiplicities.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 3, 4, 6, 9, 11, 16, 22, 29, 38, 52, 66, 88, 114, 147, 186, 245, 302, 389, 486, 613, 757, 960, 1172, 1466, 1790, 2220, 2695, 3332, 4013, 4926, 5938, 7228, 8660, 10519, 12545, 15151, 18041, 21663, 25701, 30774, 36361, 43359, 51149, 60720, 71374
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2024

Keywords

Comments

A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 and ranked by A357976.

Examples

			The partition y = (6,2,1,1) has multiplicities (1,1,2), which are biquanimous because we have the partition ((1,1),(2)), so y is counted under a(10).
The a(0) = 1 through a(10) = 11 partitions:
  ()  .  .  (21)  (31)  (32)  (42)    (43)    (53)    (54)      (64)
                        (41)  (51)    (52)    (62)    (63)      (73)
                              (2211)  (61)    (71)    (72)      (82)
                                      (3211)  (3221)  (81)      (91)
                                              (3311)  (3321)    (3322)
                                              (4211)  (4221)    (4321)
                                                      (4311)    (4411)
                                                      (5211)    (5221)
                                                      (222111)  (5311)
                                                                (6211)
                                                                (322111)
		

Crossrefs

For parts instead of multiplicities we have A002219 aerated, ranks A357976.
These partitions have Heinz numbers A371781.
The complement for parts instead of multiplicities is counted by A371795, ranks A371731, bisections A006827, A058695.
The complement is counted by A371840, ranks A371782.
A237258 = biquanimous strict partitions, ranks A357854, complement A371794.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A371783 counts k-quanimous partitions.
A371791 counts biquanimous sets, differences A232466.
A371792 counts non-biquanimous sets, differences A371793.

Programs

  • Mathematica
    biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
    Table[Length[Select[IntegerPartitions[n], biqQ[Length/@Split[#]]&]],{n,0,30}]
Previous Showing 41-50 of 59 results. Next