A372589
Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is even.
Original entry on oeis.org
3, 4, 5, 9, 12, 13, 14, 16, 17, 20, 22, 23, 25, 30, 31, 35, 36, 37, 38, 39, 42, 43, 48, 49, 52, 53, 54, 56, 57, 58, 61, 63, 64, 66, 67, 68, 69, 73, 75, 77, 80, 82, 83, 85, 88, 90, 92, 93, 94, 97, 99, 100, 102, 103, 109, 110, 115, 118, 119, 120, 121, 123, 124
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{1,2} 3 (2)
{3} 4 (1,1)
{1,3} 5 (3)
{1,4} 9 (2,2)
{3,4} 12 (2,1,1)
{1,3,4} 13 (6)
{2,3,4} 14 (4,1)
{5} 16 (1,1,1,1)
{1,5} 17 (7)
{3,5} 20 (3,1,1)
{2,3,5} 22 (5,1)
{1,2,3,5} 23 (9)
{1,4,5} 25 (3,3)
{2,3,4,5} 30 (3,2,1)
{1,2,3,4,5} 31 (11)
{1,2,6} 35 (4,3)
{3,6} 36 (2,2,1,1)
{1,3,6} 37 (12)
{2,3,6} 38 (8,1)
{1,2,3,6} 39 (6,2)
{2,4,6} 42 (4,2,1)
{1,2,4,6} 43 (14)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
Cf.
A000720,
A006141,
A066207,
A243055,
A257991,
A300272,
A304818,
A340604,
A341446,
A372429-
A372433,
A372438.
-
Select[Range[2,100],EvenQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&]
A372590
Numbers whose binary weight (A000120) plus bigomega (A001222) is odd.
Original entry on oeis.org
1, 3, 4, 5, 12, 14, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 29, 30, 35, 38, 43, 45, 48, 49, 53, 55, 56, 62, 63, 64, 66, 68, 69, 71, 72, 74, 75, 78, 80, 81, 82, 83, 84, 87, 88, 89, 91, 92, 93, 94, 99, 100, 101, 102, 104, 105, 108, 113, 114, 115, 116, 118, 120
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{1} 1 ()
{1,2} 3 (2)
{3} 4 (1,1)
{1,3} 5 (3)
{3,4} 12 (2,1,1)
{2,3,4} 14 (4,1)
{5} 16 (1,1,1,1)
{1,5} 17 (7)
{2,5} 18 (2,2,1)
{3,5} 20 (3,1,1)
{1,3,5} 21 (4,2)
{2,3,5} 22 (5,1)
{1,2,3,5} 23 (9)
{1,4,5} 25 (3,3)
{2,4,5} 26 (6,1)
{1,2,4,5} 27 (2,2,2)
{1,3,4,5} 29 (10)
{2,3,4,5} 30 (3,2,1)
{1,2,6} 35 (4,3)
{2,3,6} 38 (8,1)
{1,2,4,6} 43 (14)
{1,3,4,6} 45 (3,2,2)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
A356934
Number of multisets of odd-size multisets whose multiset union is a size-n multiset covering an initial interval with weakly decreasing multiplicities.
Original entry on oeis.org
1, 1, 2, 6, 17, 46, 166, 553, 2093
Offset: 0
The a(1) = 1 through a(4) = 17 multiset partitions:
{{1}} {{1},{1}} {{1,1,1}} {{1},{1,1,1}}
{{1},{2}} {{1,1,2}} {{1},{1,1,2}}
{{1,2,3}} {{1},{1,2,2}}
{{1},{1},{1}} {{1},{1,2,3}}
{{1},{1},{2}} {{1},{2,3,4}}
{{1},{2},{3}} {{2},{1,1,1}}
{{2},{1,1,2}}
{{2},{1,1,3}}
{{2},{1,3,4}}
{{3},{1,1,2}}
{{3},{1,2,4}}
{{4},{1,2,3}}
{{1},{1},{1},{1}}
{{1},{1},{1},{2}}
{{1},{1},{2},{2}}
{{1},{1},{2},{3}}
{{1},{2},{3},{4}}
A011782 counts multisets covering an initial interval.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
Table[Length[Select[Join@@mps/@strnorm[n],OddQ[Times@@Length/@#]&]],{n,0,5}]
A372587
Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is even.
Original entry on oeis.org
6, 7, 10, 11, 13, 14, 18, 19, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 49, 50, 52, 56, 57, 58, 62, 69, 70, 72, 74, 75, 76, 77, 82, 83, 85, 86, 87, 88, 90, 92, 96, 98, 100, 102, 103, 104, 106, 107, 108, 109, 112, 117, 120, 123
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{2,3} 6 (2,1)
{1,2,3} 7 (4)
{2,4} 10 (3,1)
{1,2,4} 11 (5)
{1,3,4} 13 (6)
{2,3,4} 14 (4,1)
{2,5} 18 (2,2,1)
{1,2,5} 19 (8)
{2,3,5} 22 (5,1)
{1,2,3,5} 23 (9)
{4,5} 24 (2,1,1,1)
{1,4,5} 25 (3,3)
{2,4,5} 26 (6,1)
{1,2,4,5} 27 (2,2,2)
{3,4,5} 28 (4,1,1)
{2,3,4,5} 30 (3,2,1)
{1,2,3,4,5} 31 (11)
{1,6} 33 (5,2)
{2,6} 34 (7,1)
{1,2,6} 35 (4,3)
{1,3,6} 37 (12)
{2,3,6} 38 (8,1)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100],EvenQ[Total[bix[#]]+Total[prix[#]]]&]
A356933
Number of multisets of multisets, each of odd size, whose multiset union is a size-n multiset covering an initial interval.
Original entry on oeis.org
1, 1, 2, 8, 28, 108, 524, 2608, 14176, 86576, 550672, 3782496, 27843880, 214071392, 1751823600, 15041687664, 134843207240, 1269731540864, 12427331494304, 126619822952928, 1341762163389920, 14712726577081248, 167209881188545344, 1963715680476759040, 23794190474350155856
Offset: 0
The a(4) = 28 multiset partitions:
{1}{111} {1}{112} {1}{123} {1}{234}
{1}{1}{1}{1} {1}{122} {1}{223} {2}{134}
{1}{222} {1}{233} {3}{124}
{2}{111} {2}{113} {4}{123}
{2}{112} {2}{123} {1}{2}{3}{4}
{2}{122} {2}{133}
{1}{1}{1}{2} {3}{112}
{1}{1}{2}{2} {3}{122}
{1}{2}{2}{2} {3}{123}
{1}{1}{2}{3}
{1}{2}{2}{3}
{1}{2}{3}{3}
A011782 counts multisets covering an initial interval.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
Table[Length[Select[Join@@mps/@allnorm[n],OddQ[Times@@Length/@#]&]],{n,0,5}]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
R(n,k) = {EulerT(vector(n, j, if(j%2 == 1, binomial(j+k-1, j))))}
seq(n) = {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Jan 01 2023
A349150
Heinz numbers of integer partitions with at most one odd part.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 9, 11, 13, 14, 15, 17, 18, 19, 21, 23, 26, 27, 29, 31, 33, 35, 37, 38, 39, 41, 42, 43, 45, 47, 49, 51, 53, 54, 57, 58, 59, 61, 63, 65, 67, 69, 71, 73, 74, 77, 78, 79, 81, 83, 86, 87, 89, 91, 93, 95, 97, 98, 99, 101, 103, 105, 106, 107, 109
Offset: 1
The terms and their prime indices begin:
1: {} 23: {9} 49: {4,4}
2: {1} 26: {1,6} 51: {2,7}
3: {2} 27: {2,2,2} 53: {16}
5: {3} 29: {10} 54: {1,2,2,2}
6: {1,2} 31: {11} 57: {2,8}
7: {4} 33: {2,5} 58: {1,10}
9: {2,2} 35: {3,4} 59: {17}
11: {5} 37: {12} 61: {18}
13: {6} 38: {1,8} 63: {2,2,4}
14: {1,4} 39: {2,6} 65: {3,6}
15: {2,3} 41: {13} 67: {19}
17: {7} 42: {1,2,4} 69: {2,9}
18: {1,2,2} 43: {14} 71: {20}
19: {8} 45: {2,2,3} 73: {21}
21: {2,4} 47: {15} 74: {1,12}
These are the positions of 0's and 1's in
A257991.
The conjugate partitions are ranked by
A349151.
A122111 is a representation of partition conjugation.
A300063 ranks partitions of odd numbers, counted by
A058695 up to 0's.
A316524 gives the alternating sum of prime indices (reverse:
A344616).
A325698 ranks partitions with as many even as odd parts, counted by
A045931.
A345958 ranks partitions with alternating sum 1.
A349157 ranks partitions with as many even parts as odd conjugate parts.
Cf.
A000290,
A000700,
A001222,
A027187,
A027193,
A028260,
A035363,
A047993,
A215366,
A257992,
A277579,
A326841.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Count[Reverse[primeMS[#]],_?OddQ]<=1&]
A362558
Number of integer partitions of n without a nonempty initial consecutive subsequence summing to n/2.
Original entry on oeis.org
1, 1, 1, 3, 2, 7, 6, 15, 11, 30, 27, 56, 44, 101, 93, 176, 149, 297, 271, 490, 432, 792, 744, 1255, 1109, 1958, 1849, 3010, 2764, 4565, 4287, 6842, 6328, 10143, 9673, 14883, 13853, 21637, 20717, 31185, 29343, 44583, 42609, 63261, 60100, 89134, 85893, 124754
Offset: 0
The a(1) = 1 through a(7) = 15 partitions:
(1) (2) (3) (4) (5) (6) (7)
(21) (31) (32) (42) (43)
(111) (41) (51) (52)
(221) (222) (61)
(311) (411) (322)
(2111) (2211) (331)
(11111) (421)
(511)
(2221)
(3211)
(4111)
(22111)
(31111)
(211111)
(1111111)
The partition y = (3,2,1,1,1) has nonempty initial consecutive subsequences (3,2,1,1,1), (3,2,1,1), (3,2,1), (3,2), (3), with sums 8, 7, 6, 5, 3. Since 4 is missing, y is counted under a(8).
The version for compositions is
A213173.
The complement is counted by
A322439 aerated.
For mean instead of median we have
A362559.
Cf.
A058398,
A108917,
A169942,
A325676,
A353864,
A360254,
A360672,
A360675,
A360686,
A360687,
A362560.
-
Table[Length[Select[IntegerPartitions[n],!MemberQ[Accumulate[#],n/2]&]],{n,0,15}]
A249543
Square array T(m,n) of integer partitions with m addends n+1, read by antidiagonals.
Original entry on oeis.org
1, 2, 3, 4, 9, 7, 6, 20, 26, 15, 10, 40, 72, 68, 30, 14, 75, 171, 220, 159, 56, 21, 133, 379, 614, 603, 352, 101, 29, 229, 786, 1559, 1928, 1525, 732, 176, 41, 383, 1568, 3700, 5564, 5534, 3618, 1465, 297
Offset: 1
T(5,2) = 159.
A194602(159) = 14043. (So A249544(5,2) = 14043.)
14043 in binary is 11011011011011. That corresponds to the integer partition with 5 times the addend 3. (See row 159 in "Table for A194602" link.)
Array begins:
n 1 2 3 4 5 6 7 8 9
m
1 1 2 4 6 10 14 21 29 41
2 3 9 20 40 75 133 229 383
3 7 26 72 171 379 786 1568
4 15 68 220 614 1559 3700
5 30 159 603 1928 5564
6 56 352 1525 5534
7 101 732 3618
8 176 1465
9 297
A342081
Numbers without an inferior odd divisor > 1.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 26, 28, 29, 31, 32, 34, 37, 38, 41, 43, 44, 46, 47, 52, 53, 58, 59, 61, 62, 64, 67, 68, 71, 73, 74, 76, 79, 82, 83, 86, 88, 89, 92, 94, 97, 101, 103, 104, 106, 107, 109, 113, 116, 118, 122, 124
Offset: 1
The divisors > 1 of 72 are {2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72}, of which {3, 9} are odd and {2, 3, 4, 6, 8} are inferior, with intersection {3}, so 72 is not in the sequence.
The strictly inferior version is the same with
A001248 added.
A006530 selects the greatest prime factor.
A020639 selects the smallest prime factor.
A038548 counts superior (or inferior) divisors, with strict case
A056924.
- Odd -
A026424 lists numbers with odd Omega.
A027193 counts odd-length partitions.
A058695 counts partitions of odd numbers.
A340101 counts factorizations into odd factors;
A340102 also has odd length.
A341594 counts strictly superior odd divisors
A341675 counts superior odd divisors.
Cf.
A000005,
A000203,
A001055,
A001221,
A001222,
A001414,
A207375,
A244991,
A300272,
A340832,
A340931.
-
Select[Range[100],Function[n,Select[Divisors[n]//Rest,OddQ[#]&<=n/#&]=={}]]
-
is(n) = #select(x -> x > 2 && x^2 <= n, factor(n)[, 1]) == 0; \\ Amiram Eldar, Nov 01 2024
-
from sympy import primefactors
A342081_list = [n for n in range(1,10**3) if len([p for p in primefactors(n) if p > 2 and p*p <= n]) == 0] # Chai Wah Wu, Mar 08 2021
A371839
Number of integer partitions of n with biquanimous multiplicities.
Original entry on oeis.org
1, 0, 0, 1, 1, 2, 3, 4, 6, 9, 11, 16, 22, 29, 38, 52, 66, 88, 114, 147, 186, 245, 302, 389, 486, 613, 757, 960, 1172, 1466, 1790, 2220, 2695, 3332, 4013, 4926, 5938, 7228, 8660, 10519, 12545, 15151, 18041, 21663, 25701, 30774, 36361, 43359, 51149, 60720, 71374
Offset: 0
The partition y = (6,2,1,1) has multiplicities (1,1,2), which are biquanimous because we have the partition ((1,1),(2)), so y is counted under a(10).
The a(0) = 1 through a(10) = 11 partitions:
() . . (21) (31) (32) (42) (43) (53) (54) (64)
(41) (51) (52) (62) (63) (73)
(2211) (61) (71) (72) (82)
(3211) (3221) (81) (91)
(3311) (3321) (3322)
(4211) (4221) (4321)
(4311) (4411)
(5211) (5221)
(222111) (5311)
(6211)
(322111)
For parts instead of multiplicities we have
A002219 aerated, ranks
A357976.
These partitions have Heinz numbers
A371781.
A371783 counts k-quanimous partitions.
-
biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
Table[Length[Select[IntegerPartitions[n], biqQ[Length/@Split[#]]&]],{n,0,30}]
Comments