cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A102903 Primes of the form 3^k + 4.

Original entry on oeis.org

5, 7, 13, 31, 733, 19687, 59053, 31381059613, 205891132094653, 109418989131512359213, 1570042899082081611640534567, 323257909929174534292273980721360271853391
Offset: 1

Views

Author

Roger L. Bagula, Mar 01 2005

Keywords

Crossrefs

Cf. A000040, A058958 (associated k).
Cf. Primes of the form 3^k + d: A057735 (d=2), this sequence (d=4), A102870 (d=8), A102907 (d=10), A102874 (d=14), A243437 (d=16), A102904 (d=20), A243438 (d=22), A243439 (d=26), A102906 (d=28).

Programs

  • Magma
    [a: n in [0..100] | IsPrime(a) where a is 3^n+4]; // Vincenzo Librandi, Jul 19 2012
  • Mathematica
    Select[Table[3^n+4,{n,0,200}],PrimeQ] (* Vincenzo Librandi, Jul 19 2012 *)

Formula

a(n) = 3^A058958(n) + 4. - Elmo R. Oliveira, Nov 09 2023

Extensions

Edited by Zak Seidov, Aug 29 2014

A217384 Numbers k such that 9^k + 4 is prime.

Original entry on oeis.org

0, 1, 3, 5, 11, 15, 21, 87, 99, 281, 497, 2919, 6849, 7365, 8483, 49317, 58611
Offset: 1

Views

Author

Vincenzo Librandi, Oct 04 2012

Keywords

Comments

Contribution from Bruno Berselli, Oct 04 2012: (Start)
Contains exactly the halved even terms of A058958.
Naturally, apart from the first term, these numbers are odd since (10-1)^(2n)+4 is divisible by 5. (End)
a(18) > 10^5. - Tyler NeSmith, May 05 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 3000], PrimeQ[9^# + 4] &]
  • PARI
    is(n)=ispseudoprime(9^n+4) \\ Charles R Greathouse IV, Feb 20 2017

Extensions

a(13)-a(14) from Bruno Berselli, Oct 04 2012
a(15)-a(17) from Tyler NeSmith, May 05 2021

A243397 Numbers n such that 19^n+4 is prime.

Original entry on oeis.org

0, 1, 3, 21, 145, 273, 1425, 9613, 15711, 18445
Offset: 1

Views

Author

Felix Fröhlich, Jun 04 2014

Keywords

Comments

No further terms up to 20000. - Felix Fröhlich, Oct 29 2014
No further terms up to 24000. - Felix Fröhlich, Jan 22 2015
No further terms up to 50000. - Michael S. Branicky, Oct 09 2024

Crossrefs

Corresponding sequences for k^n+4: A058958 (k=3), A124621 (k=5), A096305 (k=7), A217384 (k=9), A137236 (k=13).

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(19^n+4)]; // Vincenzo Librandi, Oct 16 2014
  • Mathematica
    Select[Range[0, 10000], PrimeQ[19^# + 4] &] (* Vincenzo Librandi, Oct 16 2014 *)
  • PARI
    for(n=0, 10^5, if(ispseudoprime(19^n+4), print1(n, ", ")))
    

Extensions

a(1)-a(2) prepended by N. J. A. Sloane, Jun 18 2014
a(9)-a(10) from Felix Fröhlich, Oct 16 2014

A247166 Numbers k such that 15^k+4 is prime.

Original entry on oeis.org

0, 1, 2, 7, 10, 39, 42, 201, 225, 551
Offset: 1

Views

Author

Felix Fröhlich, Dec 01 2014

Keywords

Comments

No further terms up to 10000.
No further terms up to 10^5. - Tyler NeSmith, Jan 21 2021

Crossrefs

Corresponding sequences for m^k+4: A058958 (m=3), A124621 (m=5), A096305 (m=7), A217384 (m=9), A137236 (m=13), A243397 (m=19).

Programs

  • Magma
    [n: n in [0..300] | IsPrime(15^n+4)]; // Vincenzo Librandi, Dec 01 2015
  • Mathematica
    a247166[n_Integer] := Select[Range[n], PrimeQ[15^# + 4] &]; a247166[10^4] (* Michael De Vlieger, Dec 03 2014 *)
  • PARI
    for(n=0, 1e5, if(ispseudoprime(15^n+4), print1(n, ", ")))
    

Extensions

Offset changed to 1 by Georg Fischer, Sep 26 2022

A230433 Numbers k such that 43^k + 4 is prime.

Original entry on oeis.org

1, 7, 13, 17, 33, 43, 205, 287, 669, 1161, 1166, 3753, 6095, 18123, 28041
Offset: 1

Views

Author

Robert Price, Oct 18 2013

Keywords

Comments

a(16) > 5*10^4.

Crossrefs

Cf. A058958.

Programs

  • Mathematica
    Do[If[PrimeQ[43^k + 4], Print[k]], {k, 50000}]

A305531 Smallest k >= 1 such that (n-1)*n^k + 1 is prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 3, 10, 3, 1, 2, 1, 1, 4, 1, 29, 14, 1, 1, 14, 2, 1, 2, 4, 1, 2, 4, 5, 12, 2, 1, 2, 2, 9, 16, 1, 2, 80, 1, 2, 4, 2, 3, 16, 2, 2, 2, 1, 15, 960, 15, 1, 4, 3, 1, 14, 1, 6, 20, 1, 3, 946, 6, 1, 18, 10, 1, 4, 1, 5, 42, 4, 1, 828, 1, 1, 2, 1, 12, 2, 6, 4, 30, 3, 3022, 2, 1, 1
Offset: 2

Views

Author

Eric Chen, Jun 04 2018

Keywords

Comments

a(prime(j)) + 1 = A087139(j).
a(123) > 10^5, a(342) > 10^5, see the Barnes link for the Sierpinski base-123 and base-342 problems.
a(251) > 73000, see A087139.

Crossrefs

For the numbers k such that these forms are prime:
a1(b): numbers k such that (b-1)*b^k-1 is prime
a2(b): numbers k such that (b-1)*b^k+1 is prime
a3(b): numbers k such that (b+1)*b^k-1 is prime
a4(b): numbers k such that (b+1)*b^k+1 is prime (no such k exists when b == 1 (mod 3))
a5(b): numbers k such that b^k-(b-1) is prime
a6(b): numbers k such that b^k+(b-1) is prime
a7(b): numbers k such that b^k-(b+1) is prime
a8(b): numbers k such that b^k+(b+1) is prime (no such k exists when b == 1 (mod 3)).
Using "-------" if there is currently no OEIS sequence and "xxxxxxx" if no such k exists (this occurs only for a4(b) and a8(b) for b == 1 (mod 3)):
.
b a1(b) a2(b) a3(b) a4(b) a5(b) a6(b) a7(b) a8(b)
--------------------------------------------------------------------
4 A272057 ------- ------- xxxxxxx A059266 A089437 A217348 xxxxxxx
7 A046866 A245241 ------- xxxxxxx A191469 A217130 A217131 xxxxxxx
11 A046867 A057462 ------- ------- ------- ------- ------- -------
12 A079907 A251259 ------- ------- ------- A137654 ------- -------
13 A297348 ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
14 A273523 ------- ------- ------- ------- ------- ------- -------
15 ------- ------- ------- ------- ------- ------- ------- -------
16 ------- ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
Cf. (smallest k such that these forms are prime) A122396 (a1(b)+1 for prime b), A087139 (a2(b)+1 for prime b), A113516 (a5(b)), A076845 (a6(b)), A178250 (a7(b)).

Programs

  • PARI
    a(n)=for(k=1,2^16,if(ispseudoprime((n-1)*n^k+1),return(k)))

A253380 Numbers k such that 17^k + 4 is prime.

Original entry on oeis.org

0, 2, 6, 18, 7238
Offset: 1

Views

Author

Felix Fröhlich, Dec 31 2014

Keywords

Comments

No further terms up to 10000.
No further terms up to 37200. - Michael S. Branicky, Mar 22 2023

Examples

			For k = 0: 17^0 + 4 = 5, which is prime, so 0 is a term of the sequence.
For k = 2: 17^2 + 4 = 293, which is prime, so 2 is a term of the sequence.
		

Crossrefs

Corresponding sequences for k^n+4: A058958 (k=3), A124621 (k=5), A096305(k=7), A217384 (k=9), A137236 (k=13), A247166 (k=15), A243397 (k=19).

Programs

  • Mathematica
    Select[Range@10^5, PrimeQ[17^# + 4] &] (* Michael De Vlieger, Jan 03 2015 *)
  • PARI
    for(n=0, 1e5, if(ispseudoprime(17^n+4), print1(n, ", ")))
Previous Showing 21-27 of 27 results.