cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A219050 Numbers k such that 3^k + 34 is prime.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 10, 17, 27, 34, 51, 57, 61, 89, 98, 171, 547, 569, 769, 874, 1105, 2198, 2307, 3937, 4685, 5105, 5582, 11131, 11821, 15902, 24626, 36401, 46195, 50974, 65198, 66685
Offset: 1

Views

Author

Nicolas M. Perrault, Nov 10 2012

Keywords

Comments

a(37) > 2*10^5. - Robert Price, Nov 24 2013

Examples

			For k = 2, 3^2 + 34 = 43 (prime), so 2 is in the sequence.
		

Crossrefs

Cf. Sequences of numbers k such that 3^k + m is prime:
(m = 2) A051783, (m = -2) A014224, (m = 4) A058958, (m = -4) A058959,
(m = 8) A217136, (m = -8) A217135, (m = 10) A217137, (m = -10) A217347,
(m = 14) A219035, (m = -14) A219038, (m = 16) A205647, (m = -16) A219039,
(m = 20) A219040, (m = -20) A219041, (m = 22) A219042, (m = -22) A219043,
(m = 26) A219044, (m = -26) A219045, (m = 28) A219046, (m = -28) A219047,
(m = 32) A219048, (m = -32) A219049, (m = 34) A219050, (m = -34) A219051. Note that if m is a multiple of 3, 3^k + m is also a multiple of 3 (for k greater than 0), and as such isn't prime.

Programs

  • Mathematica
    Do[If[PrimeQ[3^n + 34], Print[n]], {n, 10000}]
  • PARI
    is(n)=isprime(3^n+34) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(28)-a(36) from Robert Price, Nov 24 2013

A219051 Numbers k such that 3^k - 34 is prime.

Original entry on oeis.org

4, 7, 11, 13, 29, 32, 36, 44, 79, 157, 197, 341, 467, 996, 1421, 2479, 3269, 5203, 7987, 9341, 14836, 26047, 47816, 64304, 100693, 127597, 167167, 174697, 182089, 198791
Offset: 1

Views

Author

Nicolas M. Perrault, Nov 10 2012

Keywords

Comments

a(31) > 2*10^5. - Robert Price, Nov 23 2013

Examples

			For k = 4, 3^4 - 34 = 47 and 47 is prime. Hence k = 4 is included in the sequence.
		

Crossrefs

Cf. Sequences of numbers k such that 3^k + m is prime:
(m = 2) A051783, (m = -2) A014224, (m = 4) A058958, (m = -4) A058959,
(m = 8) A217136, (m = -8) A217135, (m = 10) A217137, (m = -10) A217347,
(m = 14) A219035, (m = -14) A219038, (m = 16) A205647, (m = -16) A219039,
(m = 20) A219040, (m = -20) A219041, (m = 22) A219042, (m = -22) A219043,
(m = 26) A219044, (m = -26) A219045, (m = 28) A219046, (m = -28) A219047,
(m = 32) A219048, (m = -32) A219049, (m = 34) A219050, (m = -34) A219051. Note that if m is a multiple of 3, 3^k + m is also a multiple of 3 (for k greater than 0), and as such isn't prime.

Programs

  • Mathematica
    Do[If[PrimeQ[3^n - 34], Print[n]], {n, 1, 10000}]
    Select[Range[10000], PrimeQ[3^# - 34] &] (* Alonso del Arte, Nov 10 2012 *)
  • PARI
    is(n)=isprime(3^n-34) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(21)-a(30) from Robert Price, Nov 23 2013

A063906 Numbers m such that m = 2*sigma(m)/3 - 1.

Original entry on oeis.org

15, 207, 1023, 2975, 19359, 147455, 1207359, 5017599, 2170814463, 58946212863, 1166333691001023, 36472996363223648799
Offset: 1

Views

Author

Jason Earls, Aug 30 2001

Keywords

Comments

Original title: numbers n such that t(n) = s(n), where s(n) = sigma(n)-n-1 and t(n) = |s(n)-n|+1.
From Robert Israel, Jan 12 2016: (Start)
All terms are odd and satisfy A009194(m) = 1 or 3.
Includes 3^(k-1)*(3^k-4) for k in A058959. The first few terms of this form are 15, 207, 19359, 36472996363223648799.
Other terms include 3^15*43048567*1003302465131 = 619739816695811335405066239 and 3^15*43049011*808868950607 = 499643410492503517919703039. (End)
In other words, numbers m such that sigma(m)/(m+1) = 3/2. - Michel Marcus, Jan 03 2023
Some other terms: 374444425895728906239999, 2315893253834522244855807, 946345423297942718248771143999, 3181974057764759411641233725579002844163668627480799. - Max Alekseyev, Jul 30 2025

Examples

			sigma(1207359) = 1811040; 1811040 - 1207359 - 1 = 603680; abs(603680 - 1207359) + 1 = 603680.
		

Crossrefs

Programs

  • ARIBAS
    for n := 1 to 4000000 do s := sigma(n) - n - 1; t := abs(s - n) + 1; if s = t then write(n," "); end; end;
    
  • Magma
    [n: n in [1..6*10^6] | 2*DivisorSigma(1,n)/3-1 eq n]; // Vincenzo Librandi, Oct 10 2017
  • Maple
    select(n -> numtheory:-sigma(n) = 3/2*(n+1), [seq(i,i=1..10^6,2)]); # Robert Israel, Jan 12 2016
  • Mathematica
    Select[Range[10^6], 2 * DivisorSigma[1, #]/3 - 1 == # &] (* Giovanni Resta, Apr 14 2016 *)
  • PARI
    s(n) = sigma(n)-n-1;
    t(n) = abs(s(n)-n)+1;
    for(n=1,10^8, if(t(n)==s(n),print1(n, ", ")))
    

Extensions

More terms from Klaus Brockhaus, Sep 01 2001
a(9)-a(10) from Giovanni Resta, Apr 14 2016
Simpler title suggested by Giovanni Resta, Apr 14 2016, based on formula provided by Paolo P. Lava, Jan 12 2016
a(11)-a(12) from Max Alekseyev, Jul 30 2025

A165701 Numbers n such that 5^n-6 is prime.

Original entry on oeis.org

2, 4, 5, 6, 10, 53, 76, 82, 88, 242, 247, 473, 586, 966, 1015, 1297, 1825, 2413, 2599, 2833, 5850, 5965, 6052, 27199, 49704, 79000
Offset: 1

Views

Author

M. F. Hasler and Farideh Firoozbakht, Oct 30 2009

Keywords

Comments

Numbers corresponding to the a(n) for n>11 are probable prime.
If Q is a 4-perfect number and gcd(Q, 5*(5^a(n)-6))=1 then m=5^(a(n)-1)
(5^a(n)-6)*Q is a solution of the equation sigma(x)=5(x+Q)(see comment lines of the sequence A058959). 142990848 is the smallest 4-perfect number m such that 5 doesn't divide m.
a(27) > 10^5. - Robert Price, Feb 03 2014

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[5^n-6],Print[n]],{n,8888}]
  • PARI
    is(n)=ispseudoprime(5^n-6) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(24)-a(26) from Robert Price, Feb 03 2014

A156555 Primes of the form 3^k - 4.

Original entry on oeis.org

5, 23, 239, 10460353199, 617673396283943, 450283905890997359, 36472996377170786399, 19383245667680019896796719, 67585198634817523235520443624317919, 1546132562196033993109383389296863818106322565999
Offset: 1

Views

Author

Vincenzo Librandi, Feb 10 2009

Keywords

Comments

The next term, a(11), has 84 digits. - Harvey P. Dale, Jul 24 2011

Examples

			a(1) = 3^2 - 4 = 5 is the smallest prime of that form. - _M. F. Hasler_, Oct 31 2009
		

Crossrefs

Cf. A000040, A058959 (corresponding k's).

Programs

  • Mathematica
    Select[3^Range[200]-4,PrimeQ] (* Harvey P. Dale, Jul 24 2011 *)
  • PARI
    for( k=2,999, is/*pseudo*/prime( p=3^k-4 ) & print1(p", ")) \\ M. F. Hasler, Oct 31 2009

Formula

a(n) = 3^A058959(n) - 4. - M. F. Hasler, Oct 31 2009

Extensions

a(5) corrected by M. F. Hasler, Oct 31 2009
a(10) from Harvey P. Dale, Jul 24 2011

A305531 Smallest k >= 1 such that (n-1)*n^k + 1 is prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 3, 10, 3, 1, 2, 1, 1, 4, 1, 29, 14, 1, 1, 14, 2, 1, 2, 4, 1, 2, 4, 5, 12, 2, 1, 2, 2, 9, 16, 1, 2, 80, 1, 2, 4, 2, 3, 16, 2, 2, 2, 1, 15, 960, 15, 1, 4, 3, 1, 14, 1, 6, 20, 1, 3, 946, 6, 1, 18, 10, 1, 4, 1, 5, 42, 4, 1, 828, 1, 1, 2, 1, 12, 2, 6, 4, 30, 3, 3022, 2, 1, 1
Offset: 2

Views

Author

Eric Chen, Jun 04 2018

Keywords

Comments

a(prime(j)) + 1 = A087139(j).
a(123) > 10^5, a(342) > 10^5, see the Barnes link for the Sierpinski base-123 and base-342 problems.
a(251) > 73000, see A087139.

Crossrefs

For the numbers k such that these forms are prime:
a1(b): numbers k such that (b-1)*b^k-1 is prime
a2(b): numbers k such that (b-1)*b^k+1 is prime
a3(b): numbers k such that (b+1)*b^k-1 is prime
a4(b): numbers k such that (b+1)*b^k+1 is prime (no such k exists when b == 1 (mod 3))
a5(b): numbers k such that b^k-(b-1) is prime
a6(b): numbers k such that b^k+(b-1) is prime
a7(b): numbers k such that b^k-(b+1) is prime
a8(b): numbers k such that b^k+(b+1) is prime (no such k exists when b == 1 (mod 3)).
Using "-------" if there is currently no OEIS sequence and "xxxxxxx" if no such k exists (this occurs only for a4(b) and a8(b) for b == 1 (mod 3)):
.
b a1(b) a2(b) a3(b) a4(b) a5(b) a6(b) a7(b) a8(b)
--------------------------------------------------------------------
4 A272057 ------- ------- xxxxxxx A059266 A089437 A217348 xxxxxxx
7 A046866 A245241 ------- xxxxxxx A191469 A217130 A217131 xxxxxxx
11 A046867 A057462 ------- ------- ------- ------- ------- -------
12 A079907 A251259 ------- ------- ------- A137654 ------- -------
13 A297348 ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
14 A273523 ------- ------- ------- ------- ------- ------- -------
15 ------- ------- ------- ------- ------- ------- ------- -------
16 ------- ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
Cf. (smallest k such that these forms are prime) A122396 (a1(b)+1 for prime b), A087139 (a2(b)+1 for prime b), A113516 (a5(b)), A076845 (a6(b)), A178250 (a7(b)).

Programs

  • PARI
    a(n)=for(k=1,2^16,if(ispseudoprime((n-1)*n^k+1),return(k)))
Previous Showing 21-26 of 26 results.