cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A278945 Expansion of Sum_{k>=1} k*(2*k - 1)*x^k/(1 - x^k).

Original entry on oeis.org

0, 1, 7, 16, 35, 46, 88, 92, 155, 169, 242, 232, 392, 326, 476, 496, 651, 562, 871, 704, 1050, 968, 1184, 1036, 1640, 1271, 1658, 1600, 2044, 1654, 2528, 1892, 2667, 2392, 2846, 2552, 3731, 2702, 3560, 3344, 4330, 3322, 4904, 3656, 5040, 4654, 5228, 4372, 6696, 4845, 6417, 5728, 7042, 5566, 8080, 6272, 8380, 7160, 8330, 6904, 10752
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 02 2016

Keywords

Comments

Inverse Moebius transform of hexagonal numbers (A000384).

Crossrefs

Programs

  • Magma
    [0] cat [2*DivisorSigma(2, n) - DivisorSigma(1, n): n in [1..60]]; // Vincenzo Librandi, Dec 07 2016
    
  • Mathematica
    nmax=60; CoefficientList[Series[Sum[k (2 k - 1) x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Flatten[{0, Table[2*DivisorSigma[2, n] - DivisorSigma[1, n], {n, 1, 100}]}] (* Vaclav Kotesovec, Dec 05 2016 *)
  • PARI
    a(n) = if(n == 0, 0, my(f = factor(n)); 2 * sigma(f, 2) - sigma(f)); \\ Amiram Eldar, Dec 29 2024

Formula

G.f.: Sum_{k>=1} k*(2*k - 1)*x^k/(1 - x^k).
Dirichlet g.f.: (2*zeta(s-2) - zeta(s-1))*zeta(s).
a(n) = Sum_{d|n} d*(2*d - 1).
a(n) = 2*A001157(n) - A000203(n).
Sum_{k=1..n} a(k) ~ (2*zeta(3)/3) * n^3. - Amiram Eldar, Dec 29 2024

A320901 Expansion of Sum_{k>=1} x^k/(1 + x^k)^4.

Original entry on oeis.org

1, -3, 11, -23, 36, -49, 85, -143, 176, -188, 287, -433, 456, -479, 726, -959, 970, -1024, 1331, -1748, 1866, -1741, 2301, -3153, 2961, -2824, 3830, -4559, 4496, -4514, 5457, -6943, 6842, -6174, 7890, -9844, 9140, -8553, 11126, -13348, 12342, -11998, 14191, -16941
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 23 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series(add(x^k/(1+x^k)^4,k=1..n),x,n+1), x, n), n = 1 .. 45); # Muniru A Asiru, Oct 23 2018
  • Mathematica
    nmax = 44; Rest[CoefficientList[Series[Sum[x^k/(1 + x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Sum[(-1)^(d + 1) d (d + 1) (d + 2)/6, {d, Divisors[n]}], {n, 44}]
  • PARI
    a(n) = sumdiv(n, d, (-1)^(d+1)*d*(d + 1)*(d + 2)/6); \\ Amiram Eldar, Jan 04 2025

Formula

G.f.: Sum_{k>=1} (-1)^(k+1)*A000292(k)*x^k/(1 - x^k).
a(n) = Sum_{d|n} (-1)^(d+1)*d*(d + 1)*(d + 2)/6.
a(n) = (4*A000593(n) + 6*A050999(n) + 2*A051000(n) - 2*A000203(n) - 3*A001157(n) - A001158(n))/6.
a(n) = (A138503(n) + 3*A321543(n) + 2*A002129(n)) / 6. - Amiram Eldar, Jan 04 2025

A344992 a(n) = Sum_{1 <= i <= j <= k <= m <= n} gcd(i,j,k,m).

Original entry on oeis.org

1, 6, 18, 44, 83, 159, 249, 401, 592, 867, 1163, 1655, 2122, 2796, 3594, 4594, 5579, 7046, 8394, 10328, 12339, 14699, 17021, 20441, 23526, 27317, 31379, 36323, 40846, 47300, 52786, 59954, 67191, 75380, 83720, 94662, 103837, 115137, 126851, 141059, 153440
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 05 2021

Keywords

Comments

In general, if g.f.: 1/(1-x) * Sum_{j>=1} phi(j) * x^j/(1 - x^j)^k, where k > 2 and phi is the Euler totient function (A000010), then a(n) ~ zeta(k-1) * n^k / (k! * zeta(k)).

Crossrefs

Column k=4 of A345229.
Partial sums of A309323.

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[GCD[i, j, k, m], {i, 1, j}], {j, 1, k}], {k, 1, m}], {m, 1, n}], {n, 1, 100}]
    nmax = 100; Rest[CoefficientList[Series[1/(1-x) * Sum[EulerPhi[k]*x^k/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]]
    Accumulate[Table[Sum[EulerPhi[n/d] * d*(d+1)*(d+2)/6, {d, Divisors[n]}], {n, 1, 100}]] (* faster *)
  • PARI
    a(n) = sum(i=1, n, sum(j=i, n, sum(k=j, n, sum(m=k, n, gcd([i, j, k, m]))))); \\ Michel Marcus, Jun 06 2021

Formula

G.f.: 1/(1-x) * Sum_{k>=1} phi(k) * x^k/(1 - x^k)^4, where phi is the Euler totient function (A000010).
a(n) = Sum_{k=1..n} Sum_{d|k} phi(k/d) * d*(d+1)*(d+2)/6.
a(n) ~ 15 * zeta(3) * n^4 / (4*Pi^4).
a(n) = Sum_{k=1..n} phi(k) * binomial(floor(n/k)+3,4). - Seiichi Manyama, Sep 13 2024

A363645 Expansion of Sum_{k>0} x^k/(1 - k*x^k)^4.

Original entry on oeis.org

1, 5, 11, 29, 36, 109, 85, 297, 256, 801, 287, 2881, 456, 5965, 3766, 17489, 970, 57385, 1331, 125681, 63498, 294933, 2301, 1072865, 24801, 1867009, 1087030, 4942561, 4496, 15697761, 5457, 28721057, 16895770, 63511593, 1404306, 225177013, 9140, 348661477
Offset: 1

Views

Author

Seiichi Manyama, Jun 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (n/#)^(# - 1)*Binomial[# + 2, 3] &]; Array[a, 40] (* Amiram Eldar, Jul 18 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d)^(d-1)*binomial(d+2, 3));

Formula

a(n) = Sum_{d|n} (n/d)^(d-1) * binomial(d+2,3).

A278947 Expansion of Sum_{k>=1} (k*(5*k - 3)/2)*x^k/(1 - x^k).

Original entry on oeis.org

0, 1, 8, 19, 42, 56, 107, 113, 190, 208, 298, 287, 483, 404, 589, 614, 806, 698, 1079, 875, 1302, 1202, 1471, 1289, 2035, 1581, 2062, 1990, 2541, 2060, 3142, 2357, 3318, 2978, 3544, 3178, 4641, 3368, 4435, 4166, 5390, 4142, 6106, 4559, 6279, 5798, 6517, 5453, 8339, 6042, 7998, 7142, 8778, 6944, 10070, 7822, 10445, 8930, 10390
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 02 2016

Keywords

Comments

Inverse Moebius transform of heptagonal numbers (A000566).

Crossrefs

Cf. A000203, A000566 (heptagonal numbers), A002117, A059358.
Inverse Moebius transforms of polygonal numbers: A007437 (k=3), A001157 (k=4), A116913 (k=5), A278945 (k=6), this sequence (k=7).

Programs

  • Mathematica
    nmax=58; CoefficientList[Series[Sum[(k (5 k - 3)/2) x^k/(1 - x^k),  {k, 1, nmax}], {x, 0, nmax}], x]
    Flatten[{0, Table[(5*DivisorSigma[2, n] - 3*DivisorSigma[1, n])/2, {n, 1, 100}]}] (* Vaclav Kotesovec, Dec 05 2016 *)
  • PARI
    a(n) = if(n == 0, 0, my(f = factor(n)); (5 * sigma(f, 2) - 3 * sigma(f)) / 2); \\ Amiram Eldar, Dec 29 2024

Formula

G.f.: Sum_{k>=1} (k*(5*k - 3)/2)*x^k/(1 - x^k).
Dirichlet g.f.: (5*zeta(s-2) - 3*zeta(s-1))*zeta(s)/2.
a(n) = Sum_{d|n} d*(5*d - 3)/2.
a(n) = (5*A001157(n) - 3*A000203(n))/2.
Sum_{k=1..n} a(k) ~ (5*zeta(3)/6) * n^3. - Amiram Eldar, Dec 29 2024

A320941 Expansion of Sum_{k>=1} x^k*(1 + x^k)/(1 - x^k)^4.

Original entry on oeis.org

1, 6, 15, 36, 56, 111, 141, 240, 300, 446, 507, 791, 820, 1161, 1310, 1736, 1786, 2505, 2471, 3346, 3466, 4307, 4325, 5895, 5581, 7026, 7230, 8905, 8556, 11246, 10417, 13176, 13050, 15476, 15106, 19391, 17576, 21495, 21374, 25690, 23822, 30162, 27435, 33707, 32990, 37841, 35721
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 24 2018

Keywords

Comments

Inverse Möbius transform of square pyramidal numbers (A000330).

Crossrefs

Programs

  • Maple
    a:=series(add(x^k*(1+x^k)/(1-x^k)^4,k=1..100),x=0,48): seq(coeff(a,x,n),n=1..47); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 47; Rest[CoefficientList[Series[Sum[x^k (1 + x^k)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Sum[d (d + 1) (2 d + 1)/6, {d, Divisors[n]}], {n, 47}]
    Table[(DivisorSigma[1, n] + 3 DivisorSigma[2, n] + 2 DivisorSigma[3, n])/6, {n, 47}]
  • PARI
    a(n) = my(f = factor(n)); (2*sigma(f, 3) + 3*sigma(f, 2) + sigma(f, 1)) / 6; \\ Amiram Eldar, Jan 03 2025

Formula

G.f.: Sum_{k>=1} A000330(k)*x^k/(1 - x^k).
a(n) = Sum_{d|n} d*(d + 1)*(2*d + 1)/6.
a(n) = (A000203(n) + 3*A001157(n) + 2*A001158(n))/6.
a(n) = Sum_{i=1..n} i^2*A135539(n,i). - Ridouane Oudra, Jul 22 2022
From Amiram Eldar, Jan 03 2025: (Start)
Dirichlet g.f.: zeta(s) * (2*zeta(s-3) + 3*zeta(s-2) + zeta(s-1)) / 6.
Sum_{k=1..n} a(k) ~ (zeta(4)/12) * n^4. (End)

A309730 Expansion of Sum_{k>=1} x^k * (1 - x^(3*k))/(1 - x^k)^4.

Original entry on oeis.org

1, 5, 11, 24, 32, 61, 65, 109, 120, 172, 167, 279, 236, 343, 358, 470, 410, 630, 515, 762, 706, 865, 761, 1193, 933, 1216, 1174, 1497, 1220, 1850, 1397, 1959, 1762, 2098, 1882, 2739, 2000, 2629, 2470, 3188, 2462, 3614, 2711, 3723, 3438, 3871, 3245, 4939, 3594, 4749, 4246, 5214
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 14 2019

Keywords

Comments

Inverse Moebius transform of centered triangular numbers (A005448).

Crossrefs

Programs

  • Mathematica
    nmax = 52; CoefficientList[Series[Sum[x^k (1 - x^(3 k))/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[3 (DivisorSigma[2, n] - DivisorSigma[1, n])/2 + DivisorSigma[0, n], {n, 1, 52}]
  • PARI
    a(n)={sumdiv(n, d, 3*d*(d-1)/2 + 1)} \\ Andrew Howroyd, Aug 14 2019
    
  • PARI
    a(n)={3*(sigma(n,2) - sigma(n))/2 + numdiv(n)} \\ Andrew Howroyd, Aug 14 2019

Formula

G.f.: Sum_{k>=1} (3*k*(k - 1)/2 + 1) * x^k/(1 - x^k).
a(n) = 3 * (sigma_2(n) - sigma_1(n))/2 + d(n).
From Amiram Eldar, Jan 02 2025: (Start)
Dirichlet g.f.: zeta(s) * (3 * zeta(s-2) - 3 * zeta(s-1) + 2 * zeta(s)) / 2.
Sum_{k=1..n} a(k) ~ (zeta(3)/2) * n^3. (End)

A321598 a(n) = Sum_{d|n} d*binomial(d+2,3).

Original entry on oeis.org

1, 9, 31, 89, 176, 375, 589, 1049, 1516, 2384, 3147, 4823, 5916, 8437, 10406, 14105, 16474, 22380, 25271, 33264, 37810, 47683, 52901, 68183, 73301, 91100, 100174, 122197, 130356, 161750, 169137, 205593, 219162, 259242, 272714, 330524, 338144, 400719, 421686, 493424
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 14 2018

Keywords

Comments

Inverse Möbius transform of A002417.

Crossrefs

Programs

  • Mathematica
    Table[Sum[d Binomial[d + 2, 3], {d, Divisors[n]}], {n, 40}]
    nmax = 40; Rest[CoefficientList[Series[Sum[x^k (1 + 3 x^k)/(1 - x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[(2 DivisorSigma[2, n] + 3 DivisorSigma[3, n] + DivisorSigma[4, n])/6, {n, 40}]
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 4) + 3*sigma(f, 3) + 2*sigma(f, 2)) / 6; \\ Amiram Eldar, Jan 02 2025

Formula

G.f.: Sum_{k>=1} x^k*(1 + 3*x^k)/(1 - x^k)^5.
G.f.: Sum_{k>=1} k*A000292(k)*x^k/(1 - x^k).
L.g.f.: -log(Product_{k>=1} (1 - x^k)^A000292(k)) = Sum_{n>=1} a(n)*x^n/n.
Dirichlet g.f.: (zeta(s-4) + 3*zeta(s-3) + 2*zeta(s-2))*zeta(s)/6.
a(n) = (2*sigma_2(n) + 3*sigma_3(n) + sigma_4(n))/6.
a(n) = Sum_{d|n} A002417(d).
Sum_{k=1..n} a(k) ~ zeta(5) * n^5 / 30. - Vaclav Kotesovec, Feb 02 2019

A366933 Expansion of Sum_{k>=1} k^4 * x^k/(1 - x^k)^4.

Original entry on oeis.org

1, 20, 91, 340, 660, 1836, 2485, 5560, 7536, 13280, 14927, 31360, 29016, 49924, 60390, 89776, 84490, 152496, 131651, 226520, 227066, 299420, 282141, 514080, 415425, 581776, 614070, 850864, 711776, 1226520, 928977, 1442400, 1362042, 1693064, 1644930, 2609076
Offset: 1

Views

Author

Seiichi Manyama, Oct 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, d^4*binomial(n/d+2, 3));

Formula

a(n) = Sum_{d|n} d^4 * binomial(n/d+2,3).

A366986 Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{d|n} binomial(d+k-1,k).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 4, 4, 3, 1, 5, 7, 7, 2, 1, 6, 11, 14, 6, 4, 1, 7, 16, 25, 16, 12, 2, 1, 8, 22, 41, 36, 31, 8, 4, 1, 9, 29, 63, 71, 71, 29, 15, 3, 1, 10, 37, 92, 127, 147, 85, 50, 13, 4, 1, 11, 46, 129, 211, 280, 211, 145, 52, 18, 2, 1, 12, 56, 175, 331, 498, 463, 371, 176, 74, 12, 6
Offset: 1

Views

Author

Seiichi Manyama, Oct 31 2023

Keywords

Examples

			Square  array begins:
  1,  1,  1,  1,   1,   1,   1, ...
  2,  3,  4,  5,   6,   7,   8, ...
  2,  4,  7, 11,  16,  22,  29, ...
  3,  7, 14, 25,  41,  63,  92, ...
  2,  6, 16, 36,  71, 127, 211, ...
  4, 12, 31, 71, 147, 280, 498, ...
  2,  8, 29, 85, 211, 463, 925, ...
		

Crossrefs

Columns k=0..5 give A000005, A000203, A007437, A059358, A073570, A101289.
T(n,n-1) gives A332508.
T(n,n) gives A343548.
Cf. A366977.

Programs

  • PARI
    T(n, k) = sumdiv(n, d, binomial(d+k-1, k));

Formula

G.f. of column k: Sum_{j>=1} x^j/(1 - x^j)^(k+1).
Previous Showing 11-20 of 20 results.