cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A242617 Decimal expansion of Kuijlaars-Saff constant, a constant related to Tammes' constants, Thomson's electron problem and Fekete points.

Original entry on oeis.org

5, 5, 3, 0, 5, 1, 2, 9, 3, 3, 5, 7, 5, 9, 5, 1, 8, 6, 7, 7, 9, 9, 5, 1, 0, 3, 7, 0, 8, 7, 1, 2, 4, 7, 7, 4, 5, 5, 0, 8, 0, 2, 8, 5, 7, 6, 0, 1, 9, 6, 6, 1, 7, 7, 6, 3, 3, 0, 4, 0, 7, 0, 9, 7, 0, 5, 9, 5, 3, 8, 7, 8, 8, 4, 0, 7, 7, 1, 2, 5, 4, 1, 6, 8, 7, 0, 5, 3, 7, 3, 2, 6, 3, 1, 6, 8, 2, 9, 1, 3
Offset: 0

Views

Author

Jean-François Alcover, May 19 2014

Keywords

Examples

			-0.5530512933575951867799510370871247745508...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 8.8 p. 509.

Crossrefs

Programs

  • Mathematica
    c = Sqrt[3]*Sqrt[Sqrt[3]/(8*Pi)]*Zeta[1/2]*(Zeta[1/2, 1/3] - Zeta[1/2, 2/3]); RealDigits[c, 10, 100] // First
  • PARI
    sqrt(sqrt(27)/8/Pi)*zeta(1/2)*(zetahurwitz(1/2, 1/3) - zetahurwitz(1/2, 2/3)) \\ Charles R Greathouse IV, Jan 31 2018

Formula

sqrt(3)*sqrt(sqrt(3)/(8*Pi))*zeta(1/2)*(zeta(1/2, 1/3) - zeta(1/2, 2/3)).

A251734 Decimal expansion of the absolute value of zeta(1/3).

Original entry on oeis.org

9, 7, 3, 3, 6, 0, 2, 4, 8, 3, 5, 0, 7, 8, 2, 7, 1, 5, 4, 6, 8, 8, 8, 6, 8, 6, 2, 4, 4, 7, 8, 9, 6, 5, 7, 0, 7, 7, 2, 8, 2, 9, 6, 3, 1, 7, 4, 3, 0, 5, 3, 3, 3, 9, 9, 4, 5, 3, 5, 8, 1, 4, 4, 6, 2, 1, 0, 8, 5, 1, 8, 2, 8, 1, 3, 3, 9
Offset: 0

Views

Author

R. J. Mathar, Dec 07 2014

Keywords

Examples

			zeta(1/3) = -0.97336024835078271546888....
		

Crossrefs

Programs

  • Maple
    Zeta(1/3) ; evalf(%) ;
  • Mathematica
    RealDigits[Zeta[1/3], 10, 120][[1]] (* Amiram Eldar, May 31 2023 *)
  • PARI
    -zeta(1/3) \\ Jinyuan Wang, Jun 20 2020

Formula

Lim_{k->infinity} (3/2*k^(2/3) - Sum_{i=1..k} i^(-1/3)). - Jinyuan Wang, Jun 20 2020

A261805 Decimal expansion of M_8, the 8th Madelung constant (negated).

Original entry on oeis.org

2, 0, 5, 2, 4, 6, 6, 8, 2, 7, 2, 6, 9, 2, 7, 1, 2, 2, 8, 1, 7, 6, 3, 3, 7, 7, 9, 9, 1, 7, 3, 3, 8, 3, 9, 9, 1, 7, 0, 8, 3, 7, 7, 5, 2, 9, 9, 6, 5, 5, 8, 2, 1, 9, 3, 2, 3, 7, 3, 2, 4, 5, 7, 7, 5, 3, 4, 9, 9, 4, 1, 3, 2, 8, 7, 5, 2, 7, 0, 6, 1, 4, 6, 9, 8, 5, 1, 9, 8, 8, 3, 9, 4, 1, 3, 1, 7, 5, 1, 0, 8, 8, 1
Offset: 1

Views

Author

Jean-François Alcover, Sep 01 2015

Keywords

Examples

			-2.052466827269271228176337799173383991708377529965582...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.10 Madelung's constant, p. 77.

Crossrefs

Programs

  • Mathematica
    M8 = (15/(4*Pi^3))*(8*Sqrt[2] - 1)*Zeta[1/2]*Zeta[7/2]; RealDigits[M8, 10, 103] // First
  • PARI
    th4(x)=1+2*sumalt(n=1, (-1)^n*x^n^2)
    intnum(x=0, [oo, 1], (th4(exp(-x))^8-1)/sqrt(Pi*x)) \\ Charles R Greathouse IV, Jun 06 2016

Formula

M_8 = (15/(4*Pi^3))*(8*sqrt(2) - 1)*zeta(1/2)*zeta(7/2).

A211113 Decimal expansion of -zeta(-1/2).

Original entry on oeis.org

2, 0, 7, 8, 8, 6, 2, 2, 4, 9, 7, 7, 3, 5, 4, 5, 6, 6, 0, 1, 7, 3, 0, 6, 7, 2, 5, 3, 9, 7, 0, 4, 9, 3, 0, 2, 2, 2, 6, 2, 6, 8, 5, 3, 1, 2, 8, 7, 6, 7, 2, 5, 3, 7, 6, 1, 0, 1, 1, 3, 5, 5, 7, 1, 0, 6, 1, 4, 7, 2, 9, 1, 9, 3, 2, 2, 9, 2, 3, 4, 0, 4, 8, 7, 5, 4, 3, 2, 6, 6, 9, 4, 0, 7, 3, 3, 2, 1, 5, 6, 4, 3, 1, 0, 9, 9, 7, 5, 6
Offset: 0

Views

Author

Stanislav Sykora, May 17 2012

Keywords

Examples

			0.207886224977354566017306725397049302226...
		

Crossrefs

Programs

Formula

Equals -zeta(-1/2) = zeta(3/2)/(4*Pi) = A078434/ (10*A019694).

A161688 Continued fraction for zeta(1/2) (negated).

Original entry on oeis.org

1, 2, 5, 1, 4, 6, 1, 1, 2, 6, 1, 1, 2, 1, 1, 1, 37, 3, 2, 1, 2, 4, 1, 368, 2, 1, 23, 18, 1, 1, 2, 2, 2, 11, 1, 4, 1, 5, 40, 1, 2, 1, 2, 1, 1, 1, 1, 2, 4, 1, 10, 2, 5, 4, 1, 12, 2, 5, 3, 1, 7, 2, 1, 2, 1, 1, 1, 6, 1, 12, 1, 2, 2, 2, 1, 2, 36, 2, 3, 1, 1, 1, 4, 3, 2, 45, 4, 5, 1, 1, 7, 3, 1, 1, 3, 6, 2, 1, 19
Offset: 0

Views

Author

Harry J. Smith, Jun 29 2009

Keywords

Examples

			1.460354508809586812889499152... = 1 + 1/(2 + 1/(5 + 1/(1 + 1/(4 + ...))))
		

Crossrefs

Cf. A059750 Decimal expansion.

Programs

  • PARI
    { allocatemem(932245000); default(realprecision, 5400); x=contfrac(-zeta(1/2)); for (n=0, 5000, write("b161688.txt", n, " ", x[n+1])); }

A242616 Decimal expansion of lim_(n->infinity) ((Sum_(k=1..n) 1/sqrt(k)) - (Integral_{x=1..n} 1/sqrt(x))), a generalized Euler constant which evaluates to zeta(1/2) + 2.

Original entry on oeis.org

5, 3, 9, 6, 4, 5, 4, 9, 1, 1, 9, 0, 4, 1, 3, 1, 8, 7, 1, 1, 0, 5, 0, 0, 8, 4, 7, 4, 8, 4, 7, 0, 1, 9, 8, 7, 5, 3, 2, 7, 7, 0, 6, 6, 8, 9, 8, 7, 4, 1, 8, 5, 0, 9, 4, 5, 7, 1, 1, 3, 9, 1, 2, 1, 7, 4, 4, 6, 9, 4, 7, 0, 5, 2, 5, 4, 9, 9, 3, 7, 4, 7, 2, 3, 5, 8, 0, 6, 2, 4, 5, 3, 6, 6, 4, 3, 1, 8, 0, 4
Offset: 0

Views

Author

Jean-François Alcover, May 19 2014

Keywords

Comments

Sometimes called Ioachimescu's constant, after the Romanian mathematician and engineer Andrei Gheorghe Ioachimescu (1868-1943). - Amiram Eldar, Apr 02 2022

Examples

			0.53964549119041318711050084748470198753277...
		

References

  • Vasile Berinde and Eugen Păltănea, Gazeta Matematică - A Bridge Over Three Centuries, Romanian Mathematical Society, 2004, pp. 113-114.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.5.3, p. 32.
  • A. G. Ioachimescu, Problem 16, Gazeta Matematică, Vol. 1, No. 2 (1895), p. 39.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); L:=RiemannZeta(); 2 + Evaluate(L, 1/2) // G. C. Greubel, Sep 04 2018
  • Mathematica
    RealDigits[Zeta[1/2] + 2, 10, 100] // First
  • PARI
    default(realprecision, 100); zeta(1/2)+2 \\ G. C. Greubel, Sep 04 2018
    

Formula

Equals zeta(1/2) + 2.

A252244 Decimal expansion of zeta''(1/2) (negated).

Original entry on oeis.org

1, 6, 0, 0, 8, 3, 5, 7, 0, 1, 3, 9, 2, 8, 6, 6, 1, 4, 2, 2, 6, 9, 1, 3, 0, 6, 5, 0, 5, 9, 4, 4, 9, 6, 2, 7, 8, 5, 1, 8, 5, 5, 9, 3, 6, 1, 9, 6, 3, 6, 3, 5, 4, 5, 3, 5, 3, 0, 9, 2, 9, 5, 7, 5, 3, 6, 6, 7, 8, 0, 9, 2, 4, 6, 0, 1, 4, 4, 9, 8, 0, 1, 3, 3, 8, 0, 6, 8, 0, 6, 2, 7, 6, 3, 5, 6, 3, 8, 8, 5, 5, 4, 8, 4, 9
Offset: 2

Views

Author

Jean-François Alcover, Dec 16 2014

Keywords

Examples

			-16.0083570139286614226913065059449627851855936196363545353...
		

Crossrefs

Programs

  • Maple
    Zeta(2,1/2) ; evalf(%) ;
  • Mathematica
    RealDigits[Zeta''[1/2], 10, 105] // First

Formula

zeta(3) = (1/7)*(-Pi^3/4 + (2*zeta'(1/2)^3 - 3*zeta(1/2)*zeta'(1/2)*zeta''(1/2) + zeta(1/2)^2*zeta'''(1/2))/zeta(1/2)^3).

A096616 Decimal expansion of 2/3 + zeta(1/2)/sqrt(2*Pi).

Original entry on oeis.org

0, 8, 4, 0, 6, 9, 5, 0, 8, 7, 2, 7, 6, 5, 5, 9, 9, 6, 4, 6, 1, 4, 8, 9, 5, 0, 2, 4, 7, 9, 0, 3, 5, 5, 1, 1, 9, 3, 7, 5, 7, 2, 7, 9, 6, 4, 6, 8, 0, 1, 1, 9, 6, 1, 8, 4, 2, 9, 7, 2, 7, 2, 4, 6, 0, 0, 1, 3, 5, 9, 7, 9, 0, 7, 0, 1, 6, 7, 7, 2, 0, 6, 2, 4, 8, 7, 4, 7, 5, 9, 8, 3, 1, 8, 9, 0, 6, 3, 6, 0, 9, 8
Offset: 0

Views

Author

Eric W. Weisstein, Jun 30 2004

Keywords

Examples

			0.0840695087...
		

References

  • David H. Bailey, Jonathan M. Borwein, Neil J. Calkin, Roland Girgensohn, D. Russell Luke and Victor H. Moll, Experimental Mathematics in Action, Wellesley, MA: A K Peters, 2007, pp. 18 and 227.
  • Jonathan Borwein, David Bailey and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, Wellesley, MA: A K Peters, 2004, pp. 15-17.

Crossrefs

Programs

  • Mathematica
    Flatten[{0, RealDigits[2/3 + Zeta[1/2]/Sqrt[2*Pi], 10, 100][[1]]}] (* Vaclav Kotesovec, Aug 16 2015 *)
  • PARI
    2/3 + zeta(1/2)/sqrt(2*Pi) \\ Michel Marcus, Aug 15 2015

Formula

Equals Sum_{k>=1} (1/sqrt(2*Pi*k) - k^k/(k!*exp(k))). - Amiram Eldar, Oct 13 2020
Equals 2/3 - A134469. - R. J. Mathar, Dec 17 2024

A178678 Decimal expansion of the sum of alternating reciprocal square roots, omitting terms where n is a perfect square.

Original entry on oeis.org

0, 8, 8, 2, 4, 8, 5, 3, 7, 1, 3, 8, 3, 1, 4, 9, 3, 9, 1, 6, 9, 9, 6, 6, 2, 0, 7, 2, 2, 2, 2, 2, 1, 0, 6, 8, 3, 1, 5, 7, 3, 7, 5, 8, 9, 2, 3, 0, 0, 0, 7, 8, 7, 3, 7, 4, 2, 1, 3, 3, 3, 6, 1, 4, 1, 1, 2, 0, 6, 3, 6, 8, 4, 7, 4, 6, 3, 4, 3, 5, 8, 2, 7, 8, 4, 5, 9, 3, 7, 0, 0, 7, 8, 0, 6, 9, 1, 3, 3, 1, 5, 8, 9, 6, 7
Offset: 0

Views

Author

Matt Rieckman (mjr162006(AT)yahoo.com), Jun 03 2010

Keywords

Comments

Provides a closed form for the Riemann zeta function of one half: Zeta(1/2) = (1 + sqrt(2))(R - log(2)).
The omitted sum of perfect squares equates to the natural logarithm of 2. Giving the alternating sum of all reciprocal square roots as log(2) - R.

Examples

			R=0.0882485371383149391699662072222210683157375892300078737421333614112...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); L:=RiemannZeta();  (Sqrt(2)-1)*Evaluate(L, 1/2) +Log(2); // G. C. Greubel, Jan 27 2019
    
  • Mathematica
    RealDigits[(Sqrt[2] -1)*Zeta[1/2] +Log[2], 10, 100][[1]]
  • PARI
    default(realprecision, 100); (sqrt(2)-1)*zeta(1/2)+log(2) \\ G. C. Greubel, Jan 27 2019
    
  • SageMath
    numerical_approx((sqrt(2)-1)*zeta(1/2)+log(2), digits=100) # G. C. Greubel, Jan 27 2019

Formula

R = Sum_{n>=2} (-1)^n/sqrt(n) for n that are not a perfect square.
R = 1/sqrt(2) - 1/sqrt(3) - 1/sqrt(5) + 1/sqrt(6) - 1/sqrt(7) + 1/sqrt(8) + ...
R = Sum_{n>=2} (-1)^(n+1)*(1-sqrt(n))/n.

Extensions

Minor correction, simplified description, and additional comments Matt Rieckman (mjr162006(AT)yahoo.com), Jun 28 2010

A252245 Decimal expansion of zeta'''(1/2) (negated).

Original entry on oeis.org

9, 6, 0, 0, 3, 3, 0, 9, 2, 4, 5, 3, 1, 9, 0, 7, 0, 0, 9, 7, 3, 8, 9, 7, 6, 7, 2, 2, 0, 6, 9, 5, 4, 5, 9, 3, 0, 2, 5, 1, 4, 0, 1, 8, 8, 4, 6, 5, 5, 5, 7, 2, 8, 0, 5, 4, 2, 9, 9, 9, 0, 8, 0, 6, 5, 6, 7, 0, 9, 1, 9, 4, 4, 1, 8, 7, 6, 3, 1, 6, 0, 3, 4, 0, 6, 5, 5, 6, 9, 3, 2, 4, 6, 2, 3, 8, 8, 1, 1, 2, 0, 1, 0, 1
Offset: 2

Views

Author

Jean-François Alcover, Dec 16 2014

Keywords

Examples

			-96.003309245319070097389767220695459302514018846555728...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta'''[1/2], 10, 104] // First

Formula

zeta(3) = (1/7)*(-Pi^3/4 + (2*zeta'(1/2)^3 - 3*zeta(1/2)*zeta'(1/2)*zeta''(1/2) + zeta(1/2)^2*zeta'''(1/2))/zeta(1/2)^3).
Previous Showing 11-20 of 26 results. Next