cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A318394 Number of finite sets of set partitions of {1,...,n} such that any two have meet {{1},...,{n}}.

Original entry on oeis.org

2, 4, 18, 316, 37492
Offset: 1

Views

Author

Gus Wiseman, Aug 25 2018

Keywords

Examples

			The a(3) = 18 sets of set partitions:
        0
    {{1,2,3}}
   {{1,3},{2}}
   {{1,2},{3}}
   {{1},{2,3}}
  {{1},{2},{3}}
   {{1,2},{3}}   {{1,3},{2}}
   {{1},{2,3}}   {{1,3},{2}}
   {{1},{2,3}}   {{1,2},{3}}
  {{1},{2},{3}}   {{1,2,3}}
  {{1},{2},{3}}  {{1,3},{2}}
  {{1},{2},{3}}  {{1,2},{3}}
  {{1},{2},{3}}  {{1},{2,3}}
   {{1},{2,3}}   {{1,2},{3}}  {{1,3},{2}}
  {{1},{2},{3}}  {{1,2},{3}}  {{1,3},{2}}
  {{1},{2},{3}}  {{1},{2,3}}  {{1,3},{2}}
  {{1},{2},{3}}  {{1},{2,3}}  {{1,2},{3}}
  {{1},{2},{3}}  {{1},{2,3}}  {{1,2},{3}}  {{1,3},{2}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    spmeet[a_,b_]:=DeleteCases[Union@@Outer[Intersection,a,b,1],{}];spmeet[a_,b_,c__]:=spmeet[spmeet[a,b],c];
    Table[Length[stableSets[sps[Range[n]],Max@@Length/@spmeet[#1,#2]>1&]],{n,5}]

A321661 Number of non-isomorphic multiset partitions of weight n where the nonzero entries of the incidence matrix are all distinct.

Original entry on oeis.org

1, 1, 1, 4, 4, 7, 22, 25, 40, 58, 186, 204, 347, 478, 734, 2033, 2402, 3814, 5464, 8142, 11058, 30142, 34437, 55940, 77794, 116954, 156465, 229462, 533612, 640544, 994922, 1397896, 2048316, 2778750, 3987432, 5292293, 11921070, 14076550, 21802928, 29917842, 44080285
Offset: 0

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Comments

The incidence matrix of a multiset partition has entry (i, j) equal to the multiplicity of vertex i in part j.
Also the number of positive integer matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, whose nonzero entries are all distinct.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(6) = 22 multiset partitions:
  {{1}}  {{11}}  {{111}}    {{1111}}    {{11111}}    {{111111}}
                 {{122}}    {{1222}}    {{11222}}    {{112222}}
                 {{1}{11}}  {{1}{111}}  {{12222}}    {{122222}}
                 {{1}{22}}  {{1}{222}}  {{1}{1111}}  {{122333}}
                                        {{11}{111}}  {{1}{11111}}
                                        {{11}{222}}  {{11}{1111}}
                                        {{1}{2222}}  {{1}{11222}}
                                                     {{11}{1222}}
                                                     {{11}{2222}}
                                                     {{112}{222}}
                                                     {{11}{2333}}
                                                     {{1}{22222}}
                                                     {{122}{222}}
                                                     {{1}{22333}}
                                                     {{122}{333}}
                                                     {{2}{11222}}
                                                     {{22}{1222}}
                                                     {{1}{11}{111}}
                                                     {{1}{11}{222}}
                                                     {{1}{22}{222}}
                                                     {{1}{22}{333}}
                                                     {{2}{11}{222}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A059849(n).
    b(n)={sum(k=0, n, stirling(n,k,1)*sum(i=0, k, stirling(k,i,2))^2)}
    seq(n)={my(B=vector((sqrtint(8*(n+1))+1)\2, n, b(n-1))); apply(p->sum(i=0, poldegree(p), B[i+1]*polcoef(p,i)), Vec(prod(k=1, n, 1 + x^k*y + O(x*x^n))))} \\ Andrew Howroyd, Nov 16 2018

Formula

a(n) = Sum_{k>=1} A059849(k)*A008289(n,k) for n > 0. - Andrew Howroyd, Nov 17 2018

Extensions

Terms a(11) and beyond from Andrew Howroyd, Nov 16 2018

A318399 Number of triples of set partitions of {1,...,n} with meet {{1},...,{n}} and join {{1,...,n}}.

Original entry on oeis.org

1, 6, 84, 2226, 93246, 5616492, 459173406, 48933260388, 6595445513412, 1098326915060730, 221772386369110242, 53460963703982862534, 15185890964240671486740, 5026315912246843181692776, 1919721040169845172603949966, 838872819016448052585038291124
Offset: 1

Views

Author

Gus Wiseman, Aug 25 2018

Keywords

Examples

			The a(2) = 6 triples:
  {{1},{2}} {{1},{2}}  {{1,2}}
  {{1},{2}}  {{1,2}}  {{1},{2}}
  {{1},{2}}  {{1,2}}   {{1,2}}
   {{1,2}}  {{1},{2}} {{1},{2}}
   {{1,2}}  {{1},{2}}  {{1,2}}
   {{1,2}}   {{1,2}}  {{1},{2}}
		

Crossrefs

Programs

  • Mathematica
    nn=20;
    Table[n!*SeriesCoefficient[Log[1+Sum[x^k/k!*Sum[StirlingS1[k,i]*BellB[i]^3,{i,0,k}],{k,nn}]],{x,0,n}],{n,nn}]

Formula

Logarithmic transform of A318398.

A319884 Number of unordered pairs of set partitions of {1,...,n} where every block of one is a proper subset or proper superset of some block of the other.

Original entry on oeis.org

1, 0, 1, 7, 50, 481, 5667, 78058, 1238295, 22314627, 451354476, 10148011215, 251584513215, 6831141750512, 201976943666357, 6470392653260939, 223595676728884394, 8302299221314559877, 330075531021130110015, 14006780163088113914026, 632606447496264724088803
Offset: 0

Views

Author

Gus Wiseman, Dec 09 2018

Keywords

Examples

			The a(3) = 7 pairs of set partitions:
  (1)(2)(3)|(123)
    (1)(23)|(12)(3)
    (1)(23)|(13)(2)
    (1)(23)|(123)
    (12)(3)|(13)(2)
    (12)(3)|(123)
    (13)(2)|(123)
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    costabstrQ[s_,t_]:=And@@Cases[s,x_:>Select[t,x!=#&&(SubsetQ[x,#]||SubsetQ[#,x])&]!={}];
    Table[Length[Select[Subsets[sps[Range[n]],{2}],And[costabstrQ@@#,costabstrQ@@Reverse[#]]&]],{n,5}]
  • PARI
    F(x)={my(bell=(exp(y*(exp(x) - 1))  )); subst(serlaplace( serconvol(bell, bell)), y, exp(exp(x) - 1)-1)}
    seq(n) = {my(x=x + O(x*x^n)); Vec(serlaplace( 1 + exp( 2*(exp(exp(x) - 1) - exp(x)) ) * F(x) )/2)} \\ Andrew Howroyd, Jan 19 2024
    
  • PARI
    \\ 2nd prog, following formula - slightly slower
    D(n,y) = (exp(2*y)/(1 + y)^2) * sum(k=0,n, x^k*sum(j=0, k, stirling(k,j,2) * y^j)^2/k!, O(x*x^n))
    seq(n) = Vec(serlaplace((1/2)*(1 + D(n, exp(exp(x + O(x*x^n)) - 1) - 1)))) \\ Andrew Howroyd, Jan 20 2024

Formula

E.g.f.: (1/2)*(1 + D(x, exp(exp(x) - 1) - 1) ) where D(x,y) = (exp(2*y)/(1 + y)^2) * Sum_{k>=0} x^k*(Sum_{j=0..k} Stirling2(k,j)*y^j)^2/k!. - Andrew Howroyd, Jan 20 2024

Extensions

a(8) onwards from Andrew Howroyd, Jan 19 2024

A152525 a(n) is the number of unordered pairs of disjoint set partitions of an n-element set.

Original entry on oeis.org

0, 0, 1, 7, 65, 811, 12762, 244588, 5574956, 148332645, 4538695461, 157768581675, 6167103354744, 268758895112072, 12961171404183498, 687270616305277589, 39843719438374998543, 2512873126513271758171, 171643113190082528007702, 12647168303374365311984284
Offset: 0

Views

Author

David Pasino, Dec 06 2008, Dec 08 2008

Keywords

Examples

			From _Gus Wiseman_, Dec 09 2018: (Start)
The a(3) = 7 unordered pairs:
  {{1},{2},{3}}| {{1,2,3}}
   {{1},{2,3}} |{{1,2},{3}}
   {{1},{2,3}} |{{1,3},{2}}
   {{1,2},{3}} |{{1,3},{2}}
   {{1},{2,3}} | {{1,2,3}}
   {{1,2},{3}} | {{1,2,3}}
   {{1,3},{2}} | {{1,2,3}}
(End)
		

Crossrefs

Programs

  • Maple
    a:= n-> add(binomial(n,k)*binomial(combinat[bell](k),2)*
            add(Stirling2(n-k,j)*(-1)^j, j=0..n-k), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, May 27 2018
  • Mathematica
    Array[Sum[Binomial[#, k] Sum[(-1)^j*StirlingS2[# - k, j], {j, 0, # - k}] Binomial[BellB@ k, 2], {k, 0, #}] &, 20, 0] (* Michael De Vlieger, May 27 2018 *)
  • PARI
    a000110(n) = polcoeff( sum( k=0, n, prod( i=1, k, x / (1 - i*x)), x^n * O(x)), n);
    a(n) = sum(k=0, n, binomial(n,k) * sum(j=0, n-k, (-1)^j*stirling(n-k,j, 2) * binomial(a000110(k),2))); \\ Michel Marcus, May 27 2018

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * (Sum_{j=0..n-k} (-1)^j*A048993(n-k,j)) * binomial(A000110(k),2).
That is, summed on k from 0 to n, the number of k-element subsets of an n-element set, times the alternating sum of row n-k of Stirling2 numbers starting with +S(n-k, 0), times the number of pairs of partitions of k elements.
Obtained by inverting (binomial(A000110(n), 2)) = (Sum_{k=0..n} binomial(n,k)*A000110(n-k)*a(k)), which in turn is gotten by considering that a pair of conjoint partitions is gotten by choosing a partition of a subset and then choosing a pair of disjoint partitions of the complement.

A318398 Number of triples of set partitions of {1,2,...,n} whose meet is {{1},{2},...,{n}}.

Original entry on oeis.org

1, 7, 103, 2707, 110857, 6517129, 521167549, 54510591469, 7235648605909, 1190181847444189, 237953165658759679, 56905537750421669449, 16059682765076576965879, 5287171379685771887014489, 2010360123437921314268936809, 875173620070717892287441139989
Offset: 1

Views

Author

Gus Wiseman, Aug 25 2018

Keywords

Examples

			The a(2) = 7 triples:
  {{1},{2}} {{1},{2}} {{1},{2}}
  {{1},{2}} {{1},{2}}  {{1,2}}
  {{1},{2}}  {{1,2}}  {{1},{2}}
  {{1},{2}}  {{1,2}}   {{1,2}}
   {{1,2}}  {{1},{2}} {{1},{2}}
   {{1,2}}  {{1},{2}}  {{1,2}}
   {{1,2}}   {{1,2}}  {{1},{2}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[StirlingS1[n,k]*BellB[k]^3,{k,0,n}],{n,10}]

Formula

a(n) = Sum_{k = 0..n} s(n,k)*B(k)^3 where s = A048994 and B = A000110.

A318531 Number of finite sets of set partitions of {1,...,n} such that any two have join {{1,...,n}}.

Original entry on oeis.org

2, 4, 18, 450, 436270
Offset: 1

Views

Author

Gus Wiseman, Aug 28 2018

Keywords

Examples

			The a(3) = 18 sets of set partitions:
        0
    {{1,2,3}}
   {{1,3},{2}}
   {{1,2},{3}}
   {{1},{2,3}}
  {{1},{2},{3}}
   {{1,3},{2}}   {{1,2,3}}
   {{1,2},{3}}   {{1,2,3}}
   {{1,2},{3}}  {{1,3},{2}}
   {{1},{2,3}}   {{1,2,3}}
   {{1},{2,3}}  {{1,3},{2}}
   {{1},{2,3}}  {{1,2},{3}}
  {{1},{2},{3}}  {{1,2,3}}
   {{1,2},{3}}  {{1,3},{2}}   {{1,2,3}}
   {{1},{2,3}}  {{1,3},{2}}   {{1,2,3}}
   {{1},{2,3}}  {{1,2},{3}}   {{1,2,3}}
   {{1},{2,3}}  {{1,2},{3}}  {{1,3},{2}}
   {{1},{2,3}}  {{1,2},{3}}  {{1,3},{2}}  {{1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[stableSets[sps[Range[n]],Length[csm[Union[#1,#2]]]>1&]],{n,4}]

A318532 Number of finite sets of set partitions of {1,...,n} such that any two have meet {{1},...,{n}} and join {{1,...,n}}.

Original entry on oeis.org

2, 4, 11, 51, 635, 15591
Offset: 1

Views

Author

Gus Wiseman, Aug 28 2018

Keywords

Examples

			The a(3) = 11 sets of set partitions:
        0
    {{1,2,3}}
   {{1,3},{2}}
   {{1,2},{3}}
   {{1},{2,3}}
  {{1},{2},{3}}
   {{1,2},{3}}   {{1,3},{2}}
   {{1},{2,3}}   {{1,3},{2}}
   {{1},{2,3}}   {{1,2},{3}}
  {{1},{2},{3}}   {{1,2,3}}
   {{1},{2,3}}   {{1,2},{3}}  {{1,3},{2}}
		

Crossrefs

A318815 Number of triples of set partitions of {1,2,...,n} whose join is {{1,2,...,n}}.

Original entry on oeis.org

1, 7, 103, 2773, 117697, 7167619, 590978941, 63385879261, 8584707943381, 1434654097736101, 290409845948305321, 70125579500764771585, 19940633217840575968969, 6603748351832744611210549, 2522614472277243822293033719, 1102166886808604068546379343289
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Examples

			The a(2) = 7 triples:
  {{1},{2}} {{1},{2}}  {{1,2}}
  {{1},{2}}  {{1,2}}  {{1},{2}}
  {{1},{2}}  {{1,2}}   {{1,2}}
   {{1,2}}  {{1},{2}} {{1},{2}}
   {{1,2}}  {{1},{2}}  {{1,2}}
   {{1,2}}   {{1,2}}  {{1},{2}}
   {{1,2}}   {{1,2}}   {{1,2}}
		

Crossrefs

Programs

  • Mathematica
    nn=10;Table[n!*SeriesCoefficient[Log[1+Sum[BellB[n]^3*x^n/n!,{n,nn}]],{x,0,n}],{n,nn}]

Formula

Logarithmic transform of A000110(n)^3.
a(n) = Bell(n)^3 - (1/n) * Sum_{k=1..n-1} binomial(n,k) * Bell(n-k)^3 * k * a(k). - Ilya Gutkovskiy, Jan 17 2020

A318915 Number of joining pairs of integer partitions of n.

Original entry on oeis.org

1, 1, 3, 5, 11, 15, 33, 41, 77, 105, 173, 215, 381, 449, 699, 911, 1335, 1611, 2433, 2867, 4179, 5113, 6903, 8251, 11769, 13661, 18177, 22011, 28997, 33711, 45251
Offset: 0

Views

Author

Gus Wiseman, Sep 05 2018

Keywords

Comments

Two integer partitions are a joining pair if they have no common cover (coarser partition) other than the maximum. For example, (221) and (311) are not a joining pair as they are both covered by (32) or (41), while (222) and (33) are a joining pair.
All terms are odd.
The same as the number of pairs of integer partitions of n without common subsums. - Mamuka Jibladze, Jun 16 2024

Examples

			The sequence of joining pairs of integer partitions begins:
  ()()   (1)(1)   (2)(2)    (3)(3)     (4)(4)      (5)(5)
                  (2)(11)   (3)(21)    (4)(31)     (5)(41)
                  (11)(2)   (3)(111)   (4)(22)     (5)(32)
                            (21)(3)    (4)(211)    (5)(311)
                            (111)(3)   (4)(1111)   (5)(221)
                                       (31)(4)     (5)(2111)
                                       (31)(22)    (5)(11111)
                                       (22)(4)     (41)(5)
                                       (22)(31)    (41)(32)
                                       (211)(4)    (32)(5)
                                       (1111)(4)   (32)(41)
                                                   (311)(5)
                                                   (221)(5)
                                                   (2111)(5)
                                                   (11111)(5)
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    ptncaps[y_]:=Union[Map[Sort[Total/@#,Greater]&,mps[y],{1}]];
    Table[Select[Tuples[IntegerPartitions[n],2],Intersection@@ptncaps/@#=={{n}}&]//Length,{n,6}]

Formula

a(n) >= 2 * A000041(n) - 1. - Alois P. Heinz, Sep 06 2018

Extensions

a(13)-a(30) from Alois P. Heinz, Sep 05 2018
Previous Showing 11-20 of 22 results. Next