cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-57 of 57 results.

A141534 Derived from the centered polygonal numbers: start with the first triangular number, then the sum of the first square number and the second triangular number, then the sum of first pentagonal number, the second square number and the third triangular number, and so on and so on...

Original entry on oeis.org

1, 4, 11, 26, 55, 105, 184, 301, 466, 690, 985, 1364, 1841, 2431, 3150, 4015, 5044, 6256, 7671, 9310, 11195, 13349, 15796, 18561, 21670, 25150, 29029, 33336, 38101, 43355, 49130, 55459, 62376, 69916, 78115, 87010, 96639, 107041, 118256, 130325
Offset: 1

Views

Author

Dan Graybill (clopen(AT)comcast.net), Aug 12 2008

Keywords

Comments

Consider the array of triangular, square and centered polygonal numbers (irregular variant of A086272 and A086273):
1 3 6 10 15 21 28 36 45 55 A000217
1 4 9 16 25 36 49 64 81 100 A000290
1 6 16 31 51 76 106 141 181 226 A005891
1 7 19 37 61 91 127 169 217 271 A003215
1 8 22 43 71 106 148 197 253 316 A069099
1 9 25 49 81 121 169 225 289 361 A016754
1 10 28 55 91 136 190 253 325 406 A060544
1 11 31 61 101 151 211 281 361 451 A062786
1 12 34 67 111 166 232 309 397 496 A069125
1 13 37 73 121 181 253 337 433 541 A003154
1 14 40 79 131 196 274 365 469 586 A069126
1 15 43 85 141 211 295 393 505 631 A069127
etc. The sequence contains the antidiagonal sums of this array. - R. J. Mathar, Jun 05 2011
For comparison, the antidiagonal sums of A086270 are essentially A006522 starting at the 4th term. - R. J. Mathar, Sep 20 2008

Crossrefs

Cf. A000217.

Formula

a(n) = (n-1)*(n^3+11*n^2-38*n+120)/24, n>1. - R. J. Mathar, Sep 12 2008
G.f.: x*(1-x+x^2+x^3-x^5)/(1-x)^5. - Alexander R. Povolotsky, Jun 06 2011

A144410 a(n) = 4*(3*n+1)*(3*n+2).

Original entry on oeis.org

8, 80, 224, 440, 728, 1088, 1520, 2024, 2600, 3248, 3968, 4760, 5624, 6560, 7568, 8648, 9800, 11024, 12320, 13688, 15128, 16640, 18224, 19880, 21608, 23408, 25280, 27224, 29240, 31328, 33488, 35720, 38024, 40400, 42848, 45368, 47960, 50624, 53360, 56168, 59048, 62000, 65024, 68120, 71288, 74528, 77840, 81224, 84680, 88208, 91808, 95480
Offset: 0

Views

Author

Paul Curtz, Sep 30 2008

Keywords

Comments

The sequence lists all numbers k such that k+1 is a square and k+4 is divisible by 12. - Bruno Berselli, Sep 28 2017

Crossrefs

Programs

Formula

G.f.: 8*(1 + 7*x + x^2)/(1 - x)^3. - Michael De Vlieger, Sep 29 2017
a(n) = 8*A060544(n+1).
a(n) = A136016(2*n+1).
a(n) = a(m) + 36*(n - m)*(n + m + 1). For m = n-1, a(n) = a(n-1) + 72*n. - Bruno Berselli, Sep 29 2017
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n >= 3. - Klaus Purath, Jul 05 2020
E.g.f.: 4*(2 +18*x +9*x^2)*exp(x). - G. C. Greubel, Mar 27 2021
From Amiram Eldar, Dec 10 2022: (Start)
Sum_{n>=0} 1/a(n) = Pi/(12*sqrt(3)) (A244977).
Sum_{n>=0} (-1)^n/a(n) = log(2)/6. (End)

A178034 a(n) = binomial(n*Omega(n),Omega(n)) / n.

Original entry on oeis.org

1, 1, 1, 7, 1, 11, 1, 253, 17, 19, 1, 595, 1, 27, 29, 39711, 1, 1378, 1, 1711, 41, 43, 1, 138415, 49, 51, 3160, 3403, 1, 3916, 1, 25637001, 65, 67, 69, 477191, 1, 75, 77, 657359, 1, 7750, 1, 8515, 8911, 91, 1, 132563501, 97, 11026, 101, 11935, 1, 1633355
Offset: 1

Views

Author

Michel Lagneau, May 17 2010

Keywords

Comments

Omega(.) = A001222(.) is the number of prime divisors of n (counted with multiplicity).
binomial(nk,k)= n*binomial(nk-1,k-1) ensures that all entries are integers.
Subcases for this sequence:
If n is prime, Omega(n) = 1, and a(n) = binomial (n,1) / n = 1.
If n and n+1 are products of two primes (A070552), then Omega(n) = Omega(n+1) = 2, and binomial(n*Omega(n), Omega(n)) / n = binomial(2*n, 2) / n = 2*n-1 and binomial(2*(n+1), 2) / (n+1) = 2*n+1, and we obtain two consecutive numbers of the form (x, x+2), for example (17,19), (27,29), (41,43),... at n =9, 14...
Chaining this property: If n, n+1, and n+2 are semiprimes (A056809) , we find three consecutive numbers of the form (x, x+2,x+4), for example (65, 67, 69), (169, 171, 173), at n=33, 85.
At places where Omega(n)=3, we find the subsequence A060544, for example a(8) = A060544(8).
At places where Omega(n)=4, we find the subsequence A015219.

Examples

			a(8) = binomial(8*Omega(8),Omega(8))/8 = binomial(8*3,3)/8 = 2024/8 = 253.
		

Crossrefs

Programs

  • Maple
    A178034 := proc(n)
            local o ;
            o := numtheory[bigomega](n) ;
            binomial(n*o,o)/n ;
    end proc: # R. J. Mathar, Jul 08 2012
  • Mathematica
    bon[n_]:=Module[{o=PrimeOmega[n]},Binomial[n*o,o]/n]; Array[bon,60] (* Harvey P. Dale, Jul 22 2014 *)
  • PARI
    a(n)=my(b=bigomega(n));binomial(n*b,b)/n \\ Charles R Greathouse IV, Oct 25 2012

A180570 Triangle read by rows: T(n,k) is the number of unordered pairs of vertices at distance k in the graph \|/\/\/...\/_\|/ having n nodes on the horizontal path. The entries in row n are the coefficients of the Wiener polynomial of the graph.

Original entry on oeis.org

7, 12, 9, 10, 18, 18, 9, 13, 24, 27, 18, 9, 16, 30, 36, 27, 18, 9, 19, 36, 45, 36, 27, 18, 9, 22, 42, 54, 45, 36, 27, 18, 9, 25, 48, 63, 54, 45, 36, 27, 18, 9, 28, 54, 72, 63, 54, 45, 36, 27, 18, 9, 31, 60, 81, 72, 63, 54, 45, 36, 27, 18, 9, 34, 66, 90, 81, 72, 63, 54, 45, 36, 27
Offset: 2

Views

Author

Emeric Deutsch, Sep 16 2010

Keywords

Comments

Row n has n+1 entries.
Sum of entries in row n = (2 + 9n + 9n^2)/2 =A060544(n+1).
Sum_{k>=0} k*T(n,k) = A180571(n) (the Wiener indices of the graphs).

Examples

			T(2,3)=9 because in the graph \|/_\|/ there are 9 unordered pairs of vertices at distance 3.
Triangle starts:
   7, 12,  9;
  10, 18, 18,  9;
  13, 24, 27, 18,  9;
  16, 30, 36, 27, 18,  9;
		

References

  • I. Gutman, SL Lee, CH Chu. YLLuo, Indian J. Chem., 33A, 603.
  • I. Gutman, W. Linert, I. Lukovits, and Z. Tomovic, On the multiplicative Wiener index and its possible chemical applications, Monatshefte fur Chemie, 131, 421-427 (see Eq. between (10) and (11); replace n with n+2).

Crossrefs

Programs

  • Maple
    for n from 2 to 11 do P[n] := sort(expand(simplify(t*(9*t^(n+2)-3*n*t^3-8*t^2-2*t+1+3*n)/(1-t)^2))) end do: for n from 2 to 11 do seq(coeff(P[n], t, j), j = 1 .. n+1) end do; # yields sequence in triangular form

Formula

The generating polynomial of row n is t*(9t^(n+2) - 3nt^3 - 8t^2 - 2t + 1 + 3n)/(1-t)^2.
The bivariate g.f. is G = tz^2*(7 + 12t + 9t^2 - 4z - 13tz + 4tz^2 + 6t^2*z^2 - 12t^2*z)/((1-z)^2*(1-tz)).

A244911 Table read by antidiagonals: T(n,k) = n*k + T(n-1,k) for n >=1, T(0,k) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 7, 7, 1, 1, 5, 10, 13, 11, 1, 1, 6, 13, 19, 21, 16, 1, 1, 7, 16, 25, 31, 31, 22, 1, 1, 8, 19, 31, 41, 46, 43, 29, 1, 1, 9, 22, 37, 51, 61, 64, 57, 37, 1, 1, 10, 25, 43, 61, 76, 85, 85, 73, 46, 1, 1, 11, 28, 49, 71, 91, 106, 113, 109, 91
Offset: 0

Views

Author

Kival Ngaokrajang, Jul 07 2014

Keywords

Comments

T(n,k) is the total number of boxes, when we start with 1 center box (n = 0) then expand 1 box on k-arms for each n iteration. See illustration in links.
It seems that column C(k) = centered k-gonal numbers, and row R(n) = A000217(n)*k + 1.
The triangle under the main diagonal is A121722.
Column N (CN) is the Narayana transform (A001263) of (1, N, 0, 0, 0, ...). Example: C2 (1, 3, 7, 13, ...) is the Narayana transform of (1, 2, 0, 0, 0, ...). - Gary W. Adamson, Oct 01 2015

Examples

			Table begins:
       C0  C1  C2  C3  C4  C5
  n/k  0   1   2   3   4   5   ...
R0 0   1   1   1   1   1   1   ...
R1 1   1   2   3   4   5   6   ...
R2 2   1   4   7   10  13  16  ...
R3 3   1   7   13  19  25  31  ...
R4 4   1   11  21  31  41  51  ...
R5 5   1   16  31  46  61  76  ...
R6 6   1   22  43  64  85  106 ...
R7 7   1   29  57  85  113 141 ...
R8 8   1   37  73  109 145 181 ...
R9 9   1   46  91  136 181 226 ...
  ...  ... ... ... ... ... ... ...
C1 = A000124, C2 = A002061, C3 = A005448, C4 = A001844, C5 = A005891, C6 = A003215, C7 = A069099, C8 = A016754, C9 = A060544, C10 = A062786, C11 = A069125, C12  =  A003154.
R1 = A000027, R2 = A016777, R3 = A016921, R4 = A017281, R5 = 15*k + 1, R6 = A215146, R7 = A161714.
		

Crossrefs

Formula

T(n,k) = n*k + T(n-1,k) for n >=1, T(0,k) = 1.

A131828 Square of lower triangular matrix in A131821, read by rows.

Original entry on oeis.org

1, 6, 4, 14, 5, 9, 25, 7, 7, 16, 39, 9, 9, 9, 25, 56, 11, 11, 11, 11, 36, 76, 13, 13, 13, 13, 13, 49, 99, 15, 15, 15, 15, 15, 15, 64, 125, 17, 17, 17, 17, 17, 17, 17, 81, 154, 19, 19, 19, 19, 19, 19, 19, 19, 100
Offset: 1

Views

Author

Gary W. Adamson, Jul 20 2007

Keywords

Comments

Left column = A095794: (1, 6, 14, 25, 39, 56, ...).
Row sums = A060544: (1, 10, 28, 55, 91, 190, ...).

Examples

			First few rows of the triangle:
   1;
   6,  4;
  14,  5,  9;
  25,  7,  7, 16;
  39,  9,  9,  9, 25;
  56, 11, 11, 11, 11, 36;
  76, 13, 13, 13, 13, 13, 49;
  ...
		

Crossrefs

Formula

A361949 Triangle read by rows. T(n, k) = binomial(3*n - 1, 3*k - 1).

Original entry on oeis.org

1, 10, 1, 28, 56, 1, 55, 462, 165, 1, 91, 2002, 3003, 364, 1, 136, 6188, 24310, 12376, 680, 1, 190, 15504, 125970, 167960, 38760, 1140, 1, 253, 33649, 490314, 1352078, 817190, 100947, 1771, 1, 325, 65780, 1562275, 7726160, 9657700, 3124550, 230230, 2600, 1
Offset: 1

Views

Author

Peter Luschny, Mar 31 2023

Keywords

Examples

			Table T(n, k) starts:
  [1]   1;
  [2]  10,     1;
  [3]  28,    56,       1;
  [4]  55,   462,     165,       1;
  [5]  91,  2002,    3003,     364,       1;
  [6] 136,  6188,   24310,   12376,     680,       1;
  [7] 190, 15504,  125970,  167960,   38760,    1140,      1;
  [8] 253, 33649,  490314, 1352078,  817190,  100947,   1771,    1;
  [9] 325, 65780, 1562275, 7726160, 9657700, 3124550, 230230, 2600, 1.
		

Crossrefs

Cf. A082365 (row sums), A228888 (subdiagonal), A060544 (column 1), A066802 (central column).

Programs

  • Maple
    T := (n, k) -> binomial(3*n - 1, 3*k - 1):
    seq(print(seq(T(n, k), k = 1..n)), n = 1..8);
Previous Showing 51-57 of 57 results.