cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A267940 Binary representation of the n-th iteration of the "Rule 253" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 11, 11111, 1111111, 111111111, 11111111111, 1111111111111, 111111111111111, 11111111111111111, 1111111111111111111, 111111111111111111111, 11111111111111111111111, 1111111111111111111111111, 111111111111111111111111111, 11111111111111111111111111111
Offset: 0

Views

Author

Robert Price, Jan 22 2016

Keywords

Comments

With the exception of a(1) the same as A267937, A267889, A267887 and A100706. - R. J. Mathar, Jan 24 2016

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A060576.

Programs

  • Mathematica
    rule=253; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]],{k,1,rows}]   (* Binary Representation of Rows *)

Formula

Conjectures from Colin Barker, Jan 23 2016 and Apr 16 2019: (Start)
a(n) = 101*a(n-1)-100*a(n-2) for n>3.
G.f.: (1-90*x+10100*x^2-10000*x^3) / ((1-x)*(1-100*x)).
(End)

A267941 Decimal representation of the n-th iteration of the "Rule 253" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 3, 31, 127, 511, 2047, 8191, 32767, 131071, 524287, 2097151, 8388607, 33554431, 134217727, 536870911, 2147483647, 8589934591, 34359738367, 137438953471, 549755813887, 2199023255551, 8796093022207, 35184372088831, 140737488355327, 562949953421311
Offset: 0

Views

Author

Robert Price, Jan 22 2016

Keywords

Comments

With the exception of a(1) the same as A267938, A267890, A267888 and A083420. - R. J. Mathar, Jan 24 2016

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A060576.

Programs

  • Mathematica
    rule=253; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}]   (* Decimal Representation of Rows *)

Formula

Conjectures from Colin Barker, Jan 23 2016 and Apr 16 2019: (Start)
a(n) = 5*a(n-1)-4*a(n-2) for n>3.
G.f.: (1-2*x+20*x^2-16*x^3) / ((1-x)*(1-4*x)).
(End)
Empirical a(n) = 2^(2*n+1) - 1 for n>1. - Colin Barker, Nov 26 2016

A274922 a(n) = (-1)^n * n if n>0, a(0) = 1.

Original entry on oeis.org

1, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 28, -29, 30, -31, 32, -33, 34, -35, 36, -37, 38, -39, 40, -41, 42, -43, 44, -45, 46, -47, 48, -49, 50, -51, 52, -53, 54, -55, 56, -57, 58, -59
Offset: 0

Views

Author

Michael Somos, Dec 28 2016

Keywords

Comments

This is a divisibility sequence.

Examples

			G.f. = 1 - x + 2*x^2 - 3*x^3 + 4*x^4 - 5*x^5 + 6*x^6 - 7*x^7 + 8*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 + x+x^2)/(1+2*x+x^2))); // G. C. Greubel, Jul 29 2018
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], (-1)^n n];
    a[ n_] := SeriesCoefficient[ (1 + x + x^2) / (1 + 2*x + x^2), {x, 0, n}];
    LinearRecurrence[{-2,-1},{1,-1,2},60] (* Harvey P. Dale, Mar 30 2019 *)
  • PARI
    {a(n) = if( n<1, n==0, (-1)^n * n)};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + x + x^2) / (1 + 2*x + x^2) + x * O(x^n), n))};
    

Formula

Euler transform of length 3 sequence [-1, 2, -1].
a(n) = -b(n) where b() is multiplicative with b(2^e) = -(2^e) if e>0, b(p^e) = p^e otherwise.
E.g.f.: 1 - x * exp(-x).
G.f.: (1 + x + x^2) / (1 + 2*x + x^2).
G.f.: (1 - x) * (1 - x^3) / (1 - x^2)^2.
G.f.: 1 / (1 + x / (1 + x / (1 - x / (1 + x)))).
G.f.: 1 - x / (1 + x)^2 = 1 - x /(1 - x)^2 + 4*x^2 / (1 - x^2)^2.
a(n) = (-1)^n * A028310(n). a(2*n) = A004277(n). a(2*n + 1) = - A005408(n).
Convolution inverse of A106510.
A060576(n) = Sum_{k=0..n} binomial(n, k) * a(k).
A028310(n) = Sum_{k=0..n} binomial(n+1, k+1) * a(k).
a(n) = A038608(n), n>0. - R. J. Mathar, May 25 2020

A305559 [0, -1, -1] together with A000290.

Original entry on oeis.org

0, -1, -1, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500
Offset: 0

Views

Author

Paul Curtz, Jun 21 2018

Keywords

Comments

Squares leading to an autosequence of the first kind.
The third sequence of the array
A060576(n+1)= 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
A289207(n)= 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, ...
a(n)= 0, -1, -1, 0, 1, 4, 9, 16, 25, 36, ...
0, 10, 10, 5, 0, 1, 8, 27, 64, 125, ...
0, -113, -113, -68, -23, 0, 1, 16, 81, 256, ... .
The first full vertical is (-1)^n*A033312(n).
From 0, the first two nonzero antidiagonals are 0, -1, 10, -113, 1526, ... = (-1)^n* A176824(n+1).
See OEIS Wiki, Autosequence.
a(n) difference table:
0, -1, -1, 0, 1, 4, 9, 16, 25, ...
-1, 0, 1, 1, 3, 5, 7, 9, 11, ...
1, 1, 0, 2, 2, 2, 2, 2, 2, ...
0, -1, 2, 0, 0, 0, 0, 0, 0, ...

Crossrefs

Programs

  • Mathematica
    Join[{0,-1,-1},Range[0,100]^2] (* Paolo Xausa, Nov 13 2023 *)

Formula

From Stefano Spezia, May 28 2025: (Start)
G.f.: x*(1 - 2*x + x^3 - 2*x^4)/(1 - x)^3.
E.g.f.: 9 + 5*x + x^2 - exp(x)*(9 - 5*x + x^2). (End)

A060578 Number of homeomorphically irreducible general graphs on 3 labeled node and with n edges.

Original entry on oeis.org

1, 3, 9, 21, 60, 135, 282, 537, 945, 1561, 2451, 3693, 5378, 7611, 10512, 14217, 18879, 24669, 31777, 40413, 50808, 63215, 77910, 95193, 115389, 138849, 165951, 197101, 232734, 273315, 319340, 371337, 429867, 495525, 568941, 650781, 741748
Offset: 0

Views

Author

Vladeta Jovovic, Apr 03 2001

Keywords

Comments

A homeomorphically irreducible general graph is a graph with multiple edges and loops and without nodes of degree 2.

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(8x^9-36x^8+66x^7-70x^6+51x^5-24x^4+8x^3-6x^2+3x-1)/(x-1)^6,{x,0,40}],x] (* Harvey P. Dale, Jul 22 2018 *)

Formula

G.f.: - (8*x^9 - 36*x^8 + 66*x^7 - 70*x^6 + 51*x^5 - 24*x^4 + 8*x^3 - 6*x^2 + 3*x - 1)/(x - 1)^6. E.g.f. for homeomorphically irreducible general graphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp( - x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k + 1, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.

A060579 Number of homeomorphically irreducible general graphs on 4 labeled nodes and with n edges.

Original entry on oeis.org

1, 6, 19, 68, 242, 704, 1981, 5140, 12364, 27614, 57598, 113108, 210812, 375606, 643646, 1066196, 1714445, 2685464, 4109493, 6158768, 9058119, 13097592, 18647371, 26175300, 36267330, 49651242, 67224024, 90083308, 119563302
Offset: 0

Views

Author

Vladeta Jovovic, Apr 03 2001

Keywords

Comments

A homeomorphically irreducible general graph is a graph with multiple edges and loops and without nodes of degree 2.

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Formula

G.f.: (4*x^15 + 5*x^14 - 194*x^13 + 881*x^12 - 2058*x^11 + 3096*x^10 - 3330*x^9 + 2628*x^8 - 1398*x^7 + 359*x^6 + 72*x^5 - 93*x^4 + 28*x^3 + 4*x^2 - 4*x + 1)/(x - 1)^10. E.g.f. for homeomorphically irreducible general graphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp( - x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k + 1, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.

A060580 Number of homeomorphically irreducible general graphs on 5 labeled nodes and with n edges.

Original entry on oeis.org

1, 10, 40, 185, 765, 2845, 10220, 33885, 105185, 305465, 830811, 2119875, 5091525, 11565505, 24977315, 51552005, 102175360, 195301015, 361365695, 649360880, 1136438375, 1941722170, 3245874555, 5318438260, 8555568895, 13531506921
Offset: 0

Views

Author

Vladeta Jovovic, Apr 03 2001

Keywords

Comments

A homeomorphically irreducible general graph is a graph with multiple edges and loops and without nodes of degree 2.

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Formula

G.f.: - (5*x^22 - 20*x^21 + 23*x^20 - 815*x^19 + 8110*x^18 - 37255*x^17 + 104890*x^16 - 204469*x^15 + 296720*x^14 - 337455*x^13 + 310150*x^12 - 229885*x^11 + 131054*x^10 - 50485*x^9 + 6490*x^8 + 7255*x^7 - 6730*x^6 + 3242*x^5 - 995*x^4 + 180*x^3 - 5*x^2 - 5*x + 1)/(x - 1)^15. E.g.f. for homeomorphically irreducible general graphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp( - x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k + 1, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.

A167371 Triangle, read by rows, given by [0,1,-1,0,0,0,0,0,0,0,0,...] DELTA [1,0,-1,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 02 2009

Keywords

Comments

Diagonal sums: A060576.
A167374*A154325 formatted as lower triangular matrix. - Philippe Deléham, Nov 19 2009

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 1;
  0, 0, 1, 1;
  0, 0, 0, 1, 1;
  0, 0, 0, 0, 1, 1; ...
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^k = A000007(n), A046698(n+1), A111286(n+1), A027327(n) for x= 0, 1, 2, 3 respectively.
G.f.: (1+x^2*y)/(1-x*y). - Philippe Deléham, Nov 09 2013
T(n,k) = T(n-1,k-1) for n > 2, T(0,0) = T(1,1) = T(2,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 09 2013

A273153 a(n) = Numerator of (0 followed by 1's) - n/2^n.

Original entry on oeis.org

0, 1, 1, 5, 3, 27, 29, 121, 31, 503, 507, 2037, 1021, 8179, 8185, 32753, 4095, 131055, 131063, 524269, 262139, 2097131, 2097141, 8388585, 2097149, 33554407, 33554419, 134217701, 67108857, 536870883, 536870897, 2147483617, 134217727, 8589934559, 8589934575, 34359738333
Offset: 0

Views

Author

Paul Curtz, May 16 2016

Keywords

Comments

A060576(n+1) = 0, 1, 1, 1, 1, 1, 1, ... - (0(n) = Oresme(n) = 0, 1/2, 1/2, 3/8, 1/4, 5/32, 3/32, ...). Both sequences are autosequences of the first kind. f(n) = 0, 1/2, 1/2, 5/8, 3/4, 27/32, 29/32, 121/128, ... is an autosequence of the first kind. Without one 1/2, f(n) is an increasing sequence.
The numerators (1 followed by A075101(n)) are the same as in n/2^n.

Examples

			Array of differences of fractions (characteristic aspect of an autosequence of the first kind):
0,     1/2,   1/2,   5/8,   3/4, ...
1/2,     0,   1/8,   1/8,  3/32, ...
-1/2,  1/8,     0, -1/32, -1/32, ...
5/8,  -1/8, -1/32,     0, 1/128, ...
-3/4, 3/32,  1/32, 1/128,     0, ...
...
		

Crossrefs

Programs

  • Mathematica
    {0}~Join~Array[Numerator@ Abs[1 - Binomial[0, # - 1] - #/2^#] &, 30] (* Michael De Vlieger, May 17 2016 *)

A368684 Number of partitions of n into 2 parts such that the smaller part divides both n and floor(n/2).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 4, 1, 3, 1, 4, 1, 2, 1, 6, 1, 2, 1, 4, 1, 4, 1, 5, 1, 2, 1, 6, 1, 2, 1, 6, 1, 4, 1, 4, 1, 2, 1, 8, 1, 3, 1, 4, 1, 4, 1, 6, 1, 2, 1, 8, 1, 2, 1, 6, 1, 4, 1, 4, 1, 4, 1, 9, 1, 2, 1, 4, 1, 4, 1, 8, 1, 2, 1, 8, 1, 2, 1, 6, 1, 6
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 03 2024

Keywords

Comments

Essentially, A000005 interspersed with 1's [prepend 0].
Number of divisors of A057979(n+1) for n >= 2.

Crossrefs

Bisections: A060576, A000005.

Programs

  • Maple
    with(numtheory): 0, seq(2*tau(n) - tau(2*n) + (n mod 2), n=2..100); # Ridouane Oudra, Jan 18 2025
  • Mathematica
    Join[{0}, Table[DivisorSigma[0, (n+2+(n-2)*(-1)^n)/4], {n, 2, 100}]]
  • PARI
    a(n) = if(n == 1, 0, numdiv((n+2+(n-2)*(-1)^n)/4)); \\ Amiram Eldar, Jan 28 2025

Formula

a(n) = A000005(A057979(n+1)) for n >= 2.
a(2n-1) = A060576(n), a(2n) = A000005(n).
a(n) = d(floor((n+1)/2))^((n+1) mod 2), for n >= 2.
a(n) = d( (n+2+(n-2)*(-1)^n)/4 ) for n >= 2.
a(n) = Sum_{k=1..floor(n/2)} c(n/k) * c(floor(n/2)/k), where c(m) = 1 - ceiling(m) + floor(m).
a(n) = A000005(n) - A091954(n), for n > 1. - Ridouane Oudra, Jan 18 2025
Sum_{k=1..n} a(k) ~ (log(n/2) + 2*gamma)*n/2, where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 28 2025
Previous Showing 11-20 of 20 results.