A341225
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^6.
Original entry on oeis.org
1, 12, 78, 370, 1437, 4848, 14719, 41148, 107610, 266296, 628941, 1427118, 3127369, 6646440, 13746081, 27744926, 54782271, 106029918, 201512970, 376630680, 693161334, 1257641676, 2251764699, 3982196910, 6961522279, 12038699766, 20607718317, 34938910360
Offset: 6
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 6):
seq(a(n), n=6..33); # Alois P. Heinz, Feb 07 2021
-
nmax = 33; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^6, {x, 0, nmax}], x] // Drop[#, 6] &
A341226
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^7.
Original entry on oeis.org
1, 14, 105, 567, 2478, 9317, 31269, 95965, 273896, 735966, 1879059, 4591342, 10797290, 24549924, 54171729, 116368308, 243991034, 500446135, 1006039762, 1985480063, 3852429483, 7358212272, 13850448185, 25718189483, 47150564517, 85417834621, 153015826880
Offset: 7
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 7):
seq(a(n), n=7..33); # Alois P. Heinz, Feb 07 2021
-
nmax = 33; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^7, {x, 0, nmax}], x] // Drop[#, 7] &
A341227
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^8.
Original entry on oeis.org
1, 16, 136, 824, 4004, 16608, 61076, 204200, 631714, 1831752, 5027312, 13159104, 33049090, 80030808, 187613348, 427201176, 947520103, 2051989360, 4347996772, 9030416704, 18412343832, 36905322248, 72807201940, 141525042736, 271321432489, 513454659312
Offset: 8
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 8):
seq(a(n), n=8..33); # Alois P. Heinz, Feb 07 2021
-
nmax = 33; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^8, {x, 0, nmax}], x] // Drop[#, 8] &
A341228
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^9.
Original entry on oeis.org
1, 18, 171, 1149, 6147, 27891, 111567, 403722, 1345896, 4189334, 12300174, 34337403, 91721385, 235645425, 584759880, 1406588073, 3289489002, 7498465029, 16697615817, 36391839264, 77758115283, 163123713621, 336420277812, 682877289213, 1365674365197, 2693384989056
Offset: 9
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 9):
seq(a(n), n=9..34); # Alois P. Heinz, Feb 07 2021
-
nmax = 34; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^9, {x, 0, nmax}], x] // Drop[#, 9] &
A358912
Number of finite sequences of integer partitions with total sum n and all distinct lengths.
Original entry on oeis.org
1, 1, 2, 5, 11, 23, 49, 103, 214, 434, 874, 1738, 3443, 6765, 13193, 25512, 48957, 93267, 176595, 332550, 622957, 1161230, 2153710, 3974809, 7299707, 13343290, 24280924, 43999100, 79412942, 142792535, 255826836, 456735456, 812627069, 1440971069, 2546729830
Offset: 0
The a(1) = 1 through a(4) = 11 sequences:
(1) (2) (3) (4)
(11) (21) (22)
(111) (31)
(1)(11) (211)
(11)(1) (1111)
(11)(2)
(1)(21)
(2)(11)
(21)(1)
(1)(111)
(111)(1)
The case of set partitions is
A007837.
This is the case of
A055887 with all distinct lengths.
For distinct sums instead of lengths we have
A336342.
The case of twice-partitions is
A358830.
The version for constant instead of distinct lengths is
A358905.
A141199 counts sequences of partitions with weakly decreasing lengths.
Cf.
A000219,
A001970,
A038041,
A060642,
A218482,
A271619,
A319066,
A358831,
A358901,
A358906,
A358908.
-
ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
Table[Length[Select[ptnseq[n],UnsameQ@@Length/@#&]],{n,0,10}]
-
P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
seq(n) = {my(g=P(n,y)); [subst(serlaplace(p), y, 1) | p<-Vec(prod(k=1, n, 1 + y*polcoef(g, k, y) + O(x*x^n)))]} \\ Andrew Howroyd, Dec 30 2022
A326346
Total number of partitions in the partitions of compositions of n.
Original entry on oeis.org
0, 1, 4, 14, 47, 151, 474, 1457, 4414, 13210, 39155, 115120, 336183, 976070, 2819785, 8110657, 23239662, 66362960, 188930728, 536407146, 1519205230, 4293061640, 12106883585, 34079016842, 95762829405, 268670620736, 752676269695, 2105751165046, 5883798478398
Offset: 0
a(3) = 14 = 1+1+1+2+2+2+2+3 counts the partitions in 3, 21, 111, 2|1, 11|1, 1|2, 1|11, 1|1|1.
-
b:= proc(n) option remember; `if`(n=0, [1, 0], (p-> p+
[0, p[1]])(add(combinat[numbpart](j)*b(n-j), j=1..n)))
end:
a:= n-> b(n)[2]:
seq(a(n), n=0..32);
-
b[n_] := b[n] = If[n==0, {1, 0}, Function[p, p + {0, p[[1]]}][Sum[ PartitionsP[j] b[n-j], {j, 1, n}]]];
a[n_] := b[n][[2]];
a /@ Range[0, 32] (* Jean-François Alcover, Dec 05 2020, after Alois P. Heinz *)
A340987
Number of colored integer partitions of 2n such that all colors from an n-set are used.
Original entry on oeis.org
1, 2, 10, 59, 362, 2287, 14719, 95965, 631714, 4189334, 27946335, 187319827, 1260570515, 8511460908, 57634550179, 391232510284, 2661483301282, 18140003082945, 123846214549072, 846801764644618, 5797865791444367, 39745254613927264, 272762265331208465
Offset: 0
a(1) = 2: 2a, 1a1a.
a(2) = 10: 3a1b, 3b1a, 2a2b, 2a1b1b, 2b1a1a, 2a1a1b, 2b1a1b, 1a1b1b1b, 1a1a1b1b, 1a1a1a1b.
-
b:= proc(n, k) option remember; `if`(k<2, combinat[numbpart](n+1),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25);
-
b[n_, k_] := b[n, k] = If[k<2, PartitionsP[n+1], With[{q = Quotient[k, 2]}, Sum[b[j, q] b[n-j, k-q], {j, 0, n}]]];
a[n_] := b[n, n];
a /@ Range[0, 25] (* Jean-François Alcover, Feb 04 2021, after Alois P. Heinz *)
Table[SeriesCoefficient[(-1 + 1/QPochhammer[Sqrt[x]])^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jan 15 2024 *)
(* Calculation of constant d: *) 1/r/.FindRoot[{1 + s == 1/QPochhammer[Sqrt[r*s]], 1/(1 + s) + Sqrt[r]*(1 + s)*Derivative[0, 1][QPochhammer][Sqrt[r*s], Sqrt[r*s]] / (2*Sqrt[s]) == (Log[1 - Sqrt[r*s]] + QPolyGamma[0, 1, Sqrt[r*s]]) / (s*Log[r*s])}, {r, 1/7}, {s, 1}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Jan 15 2024 *)
A119442
Triangle read by rows: row n lists number of unordered partitions of n into k parts which are partition numbers (members of A000041).
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 5, 7, 2, 1, 7, 11, 7, 2, 1, 11, 26, 19, 7, 2, 1, 15, 40, 38, 19, 7, 2, 1, 22, 83, 78, 54, 19, 7, 2, 1, 30, 120, 168, 102, 54, 19, 7, 2, 1, 42, 223, 301, 244, 134, 54, 19, 7, 2, 1, 56, 320, 557, 471, 292, 134, 54, 19, 7, 2, 1, 77, 566, 1035, 1000, 623, 356, 134, 54
Offset: 0
Triangle begins:
1
2 1
3 2 1
5 7 2 1
7 11 7 2 1
11 26 19 7 2 1
15 40 38 19 7 2 1
22 83 78 54 19 7 2 1
30 120 168 102 54 19 7 2 1
42 223 301 244 134 54 19 7 2 1
56 320 557 471 292 134 54 19 7 2 1
The T(5,3) = 7 twice-partitions: (3)(1)(1), (21)(1)(1), (111)(1)(1), (2)(2)(1), (2)(11)(1), (11)(2)(1), (11)(11)(1). - _Gus Wiseman_, Mar 23 2018
Cf.
A000041,
A001970,
A008284,
A036036,
A048996,
A055887,
A061260,
A063834,
A273873,
A281145,
A289501,
A299200,
A299201.
-
nn=12;
ser=Product[1/(1-PartitionsP[n]x^n y),{n,nn}];
Table[SeriesCoefficient[ser,{x,0,n},{y,0,k}],{n,nn},{k,n}] (* Gus Wiseman, Mar 23 2018 *)
A327549
Number T(n,k) of compositions of partitions of n with exactly k compositions; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 4, 2, 1, 0, 8, 8, 2, 1, 0, 16, 16, 8, 2, 1, 0, 32, 48, 24, 8, 2, 1, 0, 64, 96, 64, 24, 8, 2, 1, 0, 128, 256, 160, 80, 24, 8, 2, 1, 0, 256, 512, 448, 192, 80, 24, 8, 2, 1, 0, 512, 1280, 1024, 576, 224, 80, 24, 8, 2, 1
Offset: 0
T(3,1) = 4: 3, 21, 12, 111.
T(3,2) = 2: 2|1, 11|1.
T(3,3) = 1: 1|1|1.
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 1;
0, 4, 2, 1;
0, 8, 8, 2, 1;
0, 16, 16, 8, 2, 1;
0, 32, 48, 24, 8, 2, 1;
0, 64, 96, 64, 24, 8, 2, 1;
0, 128, 256, 160, 80, 24, 8, 2, 1;
0, 256, 512, 448, 192, 80, 24, 8, 2, 1;
0, 512, 1280, 1024, 576, 224, 80, 24, 8, 2, 1;
...
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+expand(2^(i-1)*x*b(n-i, min(n-i, i)))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..12);
-
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + 2^(i-1) x b[n-i, Min[n-i, i]]]];
T[n_] := CoefficientList[b[n, n], x];
T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)
A341236
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^10.
Original entry on oeis.org
1, 20, 210, 1550, 9055, 44624, 192945, 751480, 2686155, 8934560, 27946335, 82884860, 234636435, 637416140, 1669127130, 4228739712, 10398140075, 24882425770, 58080468790, 132508486900, 296005537183, 648445364080, 1394961003490, 2950516502980, 6142674032345, 12599932782780
Offset: 10
Cf.
A000041,
A023009,
A048574,
A327388,
A341221,
A341222,
A341223,
A341225,
A341226,
A341227,
A341228.
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 10):
seq(a(n), n=10..35); # Alois P. Heinz, Feb 07 2021
-
nmax = 35; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^10, {x, 0, nmax}], x] // Drop[#, 10] &
Comments