A063834
Twice partitioned numbers: the number of ways a number can be partitioned into not necessarily different parts and each part is again so partitioned.
Original entry on oeis.org
1, 1, 3, 6, 15, 28, 66, 122, 266, 503, 1027, 1913, 3874, 7099, 13799, 25501, 48508, 88295, 165942, 299649, 554545, 997281, 1817984, 3245430, 5875438, 10410768, 18635587, 32885735, 58399350, 102381103, 180634057, 314957425, 551857780, 958031826, 1667918758
Offset: 0
G.f. = 1 + x + 3*x^2 + 6*x^3 + 15*x^4 + 28*x^5 + 66*x^6 + 122*x^7 + 266*x^8 + ...
If n=6, a possible first partitioning is (3+3), resulting in the following second partitionings: ((3),(3)), ((3),(2+1)), ((3),(1+1+1)), ((2+1),(3)), ((2+1),(2+1)), ((2+1),(1+1+1)), ((1+1+1),(3)), ((1+1+1),(2+1)), ((1+1+1),(1+1+1)).
A001970 counts multiset partitions of integer partitions.
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
b(n, i-1)+`if`(i>n, 0, numbpart(i)*b(n-i, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Nov 26 2015
-
Table[Plus @@ Apply[Times, IntegerPartitions[i] /. i_Integer :> PartitionsP[i], 2], {i, 36}]
(* second program: *)
b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i > n, 0, PartitionsP[i]*b[n-i, i]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)
-
{a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - numbpart(k) * x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Dec 19 2016 */
A358908
Number of finite sequences of distinct integer partitions with total sum n and weakly decreasing lengths.
Original entry on oeis.org
1, 1, 2, 6, 10, 23, 50, 95, 188, 378, 747, 1414, 2739, 5179, 9811, 18562, 34491, 64131, 118607, 218369, 400196, 731414, 1328069, 2406363, 4346152, 7819549, 14027500, 25090582, 44749372, 79586074, 141214698, 249882141, 441176493, 777107137, 1365801088, 2395427040, 4192702241
Offset: 0
The a(1) = 1 through a(4) = 10 sequences:
((1)) ((2)) ((3)) ((4))
((11)) ((21)) ((22))
((111)) ((31))
((1)(2)) ((211))
((2)(1)) ((1111))
((11)(1)) ((1)(3))
((3)(1))
((11)(2))
((21)(1))
((111)(1))
This is the distinct case of
A055887 with weakly decreasing lengths.
This is the distinct case is
A141199.
The case of distinct lengths also is
A358836.
This is the case of
A358906 with weakly decreasing lengths.
A001970 counts multiset partitions of integer partitions.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all distinct Omegas.
A358912 counts sequences of partitions with distinct lengths.
A358914 counts twice-partitions into distinct strict partitions.
-
ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
Table[Length[Select[ptnseq[n],UnsameQ@@#&&GreaterEqual@@Length/@#&]],{n,0,10}]
-
P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
R(n,v) = {[subst(serlaplace(p), y, 1) | p<-Vec(prod(k=1, #v, (1 + y*x^k + O(x*x^n))^v[k] ))]}
seq(n) = {my(g=P(n,y)); Vec(prod(k=1, n, Ser(R(n, Vec(polcoef(g, k, y), -n))) ))} \\ Andrew Howroyd, Dec 31 2022
A358905
Number of sequences of integer partitions with total sum n that are rectangular, meaning all lengths are equal.
Original entry on oeis.org
1, 1, 3, 6, 13, 24, 49, 91, 179, 341, 664, 1280, 2503, 4872, 9557, 18750, 36927, 72800, 143880, 284660, 564093, 1118911, 2221834, 4415417, 8781591, 17476099, 34799199, 69327512, 138176461, 275503854, 549502119, 1096327380, 2187894634, 4367310138, 8719509111
Offset: 0
The a(0) = 1 through a(4) = 13 sequences:
() ((1)) ((2)) ((3)) ((4))
((11)) ((21)) ((22))
((1)(1)) ((111)) ((31))
((1)(2)) ((211))
((2)(1)) ((1111))
((1)(1)(1)) ((1)(3))
((2)(2))
((3)(1))
((11)(11))
((1)(1)(2))
((1)(2)(1))
((2)(1)(1))
((1)(1)(1)(1))
The case of set partitions is
A038041.
The version for weakly decreasing lengths is
A141199, strictly
A358836.
For equal sums instead of lengths we have
A279787.
The case of plane partitions is
A323429.
The case of constant sums also is
A358833.
A055887 counts sequences of partitions with total sum n.
-
ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
Table[Length[Select[ptnseq[n],SameQ@@Length/@#&]],{n,0,10}]
-
P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
seq(n) = {my(g=P(n,y)); Vec(1 + sum(k=1, n, 1/(1 - polcoef(g, k, y)) - 1))} \\ Andrew Howroyd, Dec 31 2022
A358906
Number of finite sequences of distinct integer partitions with total sum n.
Original entry on oeis.org
1, 1, 2, 7, 13, 35, 87, 191, 470, 1080, 2532, 5778, 13569, 30715, 69583, 160386, 360709, 814597, 1824055, 4102430, 9158405, 20378692, 45215496, 100055269, 221388993, 486872610, 1069846372, 2343798452, 5127889666, 11186214519, 24351106180, 52896439646
Offset: 0
The a(1) = 1 through a(4) = 13 sequences:
((1)) ((2)) ((3)) ((4))
((11)) ((21)) ((22))
((111)) ((31))
((1)(2)) ((211))
((2)(1)) ((1111))
((1)(11)) ((1)(3))
((11)(1)) ((3)(1))
((11)(2))
((1)(21))
((2)(11))
((21)(1))
((1)(111))
((111)(1))
This is the case of
A055887 with distinct partitions.
The case of twice-partitions is
A296122.
The version for sequences of compositions is
A358907.
The case of weakly decreasing lengths is
A358908.
The case of distinct lengths is
A358912.
The version for strict partitions is
A358913, distinct case of
A304969.
A001970 counts multiset partitions of integer partitions.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all distinct Omegas.
-
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
binomial(combinat[numbpart](i), j)*b(n-i*j, i-1, p+j), j=0..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..32); # Alois P. Heinz, Feb 13 2024
-
ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
Table[Length[Select[ptnseq[n],UnsameQ@@#&]],{n,0,10}]
A358907
Number of finite sequences of distinct integer compositions with total sum n.
Original entry on oeis.org
1, 1, 2, 8, 18, 54, 156, 412, 1168, 3200, 8848, 24192, 66632, 181912, 495536, 1354880, 3680352, 9997056, 27093216, 73376512, 198355840, 535319168, 1443042688, 3884515008, 10445579840, 28046885824, 75225974912, 201536064896, 539339293824, 1441781213952
Offset: 0
The a(1) = 1 through a(4) = 18 sequences:
((1)) ((2)) ((3)) ((4))
((11)) ((12)) ((13))
((21)) ((22))
((111)) ((31))
((1)(2)) ((112))
((2)(1)) ((121))
((1)(11)) ((211))
((11)(1)) ((1111))
((1)(3))
((3)(1))
((1)(12))
((11)(2))
((1)(21))
((12)(1))
((2)(11))
((21)(1))
((1)(111))
((111)(1))
This is the strict case of
A133494.
The version for sequences of partitions is
A358906.
A001970 counts multiset partitions of integer partitions.
A218482 counts sequences of compositions with weakly decreasing lengths.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all different Omegas.
A358914 counts twice-partitions into distinct strict partitions.
Cf.
A000009,
A000041,
A000219,
A055887,
A075900,
A296122,
A304961,
A307068,
A336342,
A358836,
A358912.
-
g:= proc(n) option remember; ceil(2^(n-1)) end:
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, (t->
add(binomial(t, j)*b(n-i*j, i-1, p+j), j=0..min(t, n/i)))(g(i))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..32); # Alois P. Heinz, Dec 15 2022
-
comps[n_]:=Join@@Permutations/@IntegerPartitions[n];
Table[Length[Select[Join@@Table[Tuples[comps/@c],{c,comps[n]}],UnsameQ@@#&]],{n,0,10}]
A374704
Number of ways to choose an integer partition of each part of an integer composition of n (A055887) such that the minima are identical.
Original entry on oeis.org
1, 1, 3, 6, 15, 31, 77, 171, 410, 957, 2275, 5370, 12795, 30366, 72307, 172071, 409875, 976155, 2325804, 5541230, 13204161, 31464226, 74980838, 178684715, 425830008, 1014816979, 2418489344, 5763712776, 13736075563, 32735874251, 78016456122, 185929792353, 443110675075
Offset: 0
The a(0) = 1 through a(4) = 15 ways:
() ((1)) ((2)) ((3)) ((4))
((1,1)) ((1,2)) ((1,3))
((1),(1)) ((1,1,1)) ((2,2))
((1),(1,1)) ((1,1,2))
((1,1),(1)) ((2),(2))
((1),(1),(1)) ((1,1,1,1))
((1),(1,2))
((1,2),(1))
((1),(1,1,1))
((1,1),(1,1))
((1,1,1),(1))
((1),(1),(1,1))
((1),(1,1),(1))
((1,1),(1),(1))
((1),(1),(1),(1))
A variation for weakly increasing lengths is
A141199.
For identical sums instead of minima we have
A279787.
For maxima instead of minima, or for unreversed partitions, we have
A358905.
A055887 counts sequences of partitions with total sum n.
Cf.
A000041,
A063834,
A106356,
A189076,
A238343,
A304969,
A305551,
A319066,
A323429,
A333213,
A358833,
A358835.
-
Table[Length[Select[Join@@Table[Tuples[IntegerPartitions/@y], {y,Join@@Permutations/@IntegerPartitions[n]}],SameQ@@Min/@#&]],{n,0,15}]
-
seq(n) = Vec(1 + sum(k=1, n, -1 + 1/(1 - x^k/prod(j=k, n-k, 1 - x^j, 1 + O(x^(n-k+1)))))) \\ Andrew Howroyd, Dec 29 2024
Showing 1-6 of 6 results.
Comments