cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A328026 Number of divisible pairs of consecutive divisors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 4, 1, 3, 1, 4, 2, 2, 1, 2, 2, 2, 3, 4, 1, 2, 1, 5, 2, 2, 2, 2, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 2, 2, 3, 2, 4, 1, 4, 2, 4, 2, 2, 1, 2, 1, 2, 2, 6, 2, 4, 1, 4, 2, 2, 1, 2, 1, 2, 3, 4, 2, 4, 1, 4, 4, 2, 1, 2, 2, 2, 2, 6, 1, 2, 2, 4, 2, 2, 2, 2, 1, 3, 4, 6, 1, 4, 1, 6, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 03 2019

Keywords

Comments

The number m = 2^n, n >= 0, is the smallest for which a(m) = n. - Marius A. Burtea, Nov 20 2019

Examples

			The divisors of 500 are {1,2,4,5,10,20,25,50,100,125,250,500}, with consecutive divisible pairs {1,2}, {2,4}, {5,10}, {10,20}, {25,50}, {50,100}, {125,250}, {250,500}, so a(500) = 8.
		

Crossrefs

Positions of 1's are A000040.
Positions of 0's and 2's are A328028.
Positions of terms > 2 are A328189.
Successive pairs of consecutive divisors are counted by A129308.

Programs

  • Magma
    f:=func;  g:=func; [g(n):n in [1..100]]; // Marius A. Burtea, Nov 20 2019
  • Mathematica
    Table[Length[Split[Divisors[n],!Divisible[#2,#1]&]]-1,{n,100}]
  • PARI
    a(n) = {my(d=divisors(n), nb=0); for (i=2, #d, if ((d[i] % d[i-1]) == 0, nb++)); nb;} \\ Michel Marcus, Oct 05 2019
    

Formula

a(p^k) = k for any prime number p and k >= 0. - Rémy Sigrist, Oct 05 2019

Extensions

Data section extended up to a(105) by Antti Karttunen, Feb 23 2023

A356227 Smallest size of a maximal gapless submultiset of the prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 1, 1, 2, 4, 1, 3, 1, 1, 1, 1, 1, 4, 2, 1, 3, 1, 1, 3, 1, 5, 1, 1, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2022

Keywords

Comments

A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 18564 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}, so a(18564) = 1.
		

Crossrefs

Positions of first appearances are A000079.
The maximal gapless submultisets are counted by A287170, firsts A066205.
These are the row-minima of A356226, firsts A356232.
The greatest instead of smallest size is A356228.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A001223 lists the prime gaps, reduced A028334.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gapless prime indices, cf. A073492-A073495.
A356224 counts even gapless divisors, complement A356225.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,0,Min@@Length/@Split[primeMS[n],#1>=#2-1&]],{n,100}]

Formula

a(n) = A333768(A356230(n)).
a(n) = A055396(A356231(n)).

A060765 Numbers n such that every difference between consecutive divisors (ordered by increasing magnitude) of n is also a divisor of n.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 42, 48, 54, 60, 64, 72, 96, 100, 108, 120, 128, 144, 156, 162, 168, 180, 192, 216, 240, 256, 272, 288, 294, 300, 324, 342, 360, 384, 432, 480, 486, 500, 504, 512, 576, 600, 648, 720, 768, 840, 900, 960, 972, 1008, 1024
Offset: 1

Views

Author

Labos Elemer, Apr 24 2001

Keywords

Comments

Equivalently, A060763(n)=0.
Powers of 2 and factorials up to 7! are here.
For each k=1..A000005(a(n))-1 exists k' < A000005(a(n)) such that A193829(a(n),k) = A027750(a(n),k'). - Reinhard Zumkeller, Jun 25 2015
From Robert Israel, Jul 03 2017: (Start)
Also includes 3*2^k and 2*3^k for all k>= 1.
All terms except 1 are even. (End)
Conjecture: a(n) has the property that for each prime divisor p, p-1|a(n)/p. If this conjecture is true then terms can be searched by distinct prime divisors. - David A. Corneth, Jul 06 2017
The divisors of a(n) form a Brauer chain. See A079301 for the definition of a Brauer chain. - Zizheng Fang, Jan 30 2020

Examples

			For n = 12, divisors={1, 2, 3, 4, 6, 12}; differences={1, 1, 1, 2, 6}; every difference is a divisor, so 12 is in the sequence.
		

Crossrefs

Programs

  • Haskell
    import Data.List (sort, nub); import Data.List.Ordered (subset)
    a060765 n = a060765_list !! (n-1)
    a060765_list = filter
    (\x -> sort (nub $ a193829_row x) `subset` a027750_row' x) [1..]
    -- Reinhard Zumkeller, Jun 25 2015
    
  • Magma
    [k:k in [1..1025]| forall{i:i in [2..#Divisors(k)]|k mod (d[i]-d[i-1]) eq 0 where d is Divisors(k)}]; // Marius A. Burtea, Jan 30 2020
  • Maple
    f:= proc(n) local D,L;
      D:= numtheory:-divisors(n);
      L:= sort(convert(D,list));
      nops(convert(L[2..-1]-L[1..-2],set) minus D);
    end proc:
    select(f=0, [$1..1000]); # Robert Israel, Jul 03 2017
  • Mathematica
    test[n_ ] := Length[Complement[Drop[d=Divisors[n], 1]-Drop[d, -1], d]]==0; Select[Range[1, 1024], test]
    (* Second program: *)
    Select[Range[2^10], Function[n, AllTrue[Differences@ Divisors@ n, Divisible[n, #] &]]] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    isok(n)=my(d=divisors(n), v=vecsort(vector(#d-1, k, d[k+1]-d[k]),,8)); #select(x->setsearch(d, x), v) == #v; \\ Michel Marcus, Jul 06 2017
    
  • PARI
    is(n)=my(t); fordiv(n,d, if(n%(d-t), return(0)); t=d); 1 \\ Charles R Greathouse IV, Jul 12 2017
    

Extensions

Edited by Dean Hickerson, Jan 22 2002

A060766 Least common multiple of differences between consecutive divisors of n (ordered by size).

Original entry on oeis.org

1, 2, 2, 4, 3, 6, 4, 6, 15, 10, 6, 12, 35, 10, 8, 16, 9, 18, 10, 28, 99, 22, 12, 20, 143, 18, 42, 28, 60, 30, 16, 88, 255, 28, 18, 36, 323, 130, 60, 40, 21, 42, 154, 60, 483, 46, 24, 42, 75, 238, 234, 52, 27, 132, 84, 304, 783, 58, 60, 60, 899, 84, 32, 104, 165, 66, 442
Offset: 2

Views

Author

Labos Elemer, Apr 24 2001

Keywords

Examples

			For n=98, divisors={1,2,7,14,49,98}; differences={1,5,7,35,49}; a(98) = LCM of differences = 245.
		

Crossrefs

The GCD version appears to be A258409.
The LCM of the prime indices of n is A290103(n).
The differences between consecutive divisors of n are row n of A193829.

Programs

  • Mathematica
    a[n_ ] := LCM@@(Drop[d=Divisors[n], 1]-Drop[d, -1])
    Table[LCM@@Differences[Divisors[n]],{n,2,70}] (* Harvey P. Dale, Oct 08 2012 *)

Formula

a(n) = A290103(A328023(n)). - Gus Wiseman, Oct 16 2019

Extensions

Edited by Dean Hickerson, Jan 22 2002

A328023 Heinz number of the multiset of differences between consecutive divisors of n.

Original entry on oeis.org

1, 2, 3, 6, 7, 20, 13, 42, 39, 110, 29, 312, 37, 374, 261, 798, 53, 2300, 61, 3828, 903, 1426, 79, 18648, 497, 2542, 2379, 21930, 107, 86856, 113, 42294, 4503, 5546, 2247, 475800, 151, 7906, 8787, 370620, 173, 843880, 181, 249798, 92547, 12118, 199, 5965848
Offset: 1

Views

Author

Gus Wiseman, Oct 02 2019

Keywords

Comments

The Heinz number of an integer partition or multiset {y_1,...,y_k} is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
            1: ()
            2: (1)
            3: (2)
            6: (2,1)
            7: (4)
           20: (3,1,1)
           13: (6)
           42: (4,2,1)
           39: (6,2)
          110: (5,3,1)
           29: (10)
          312: (6,2,1,1,1)
           37: (12)
          374: (7,5,1)
          261: (10,2,2)
          798: (8,4,2,1)
           53: (16)
         2300: (9,3,3,1,1)
           61: (18)
         3828: (10,5,2,1,1)
For example, the divisors of 6 are {1,2,3,6}, with differences {1,1,3}, with Heinz number 20, so a(6) = 20.
		

Crossrefs

The sorted version is A328024.
a(n) is the Heinz number of row n of A193829, A328025, or A328027.

Programs

  • Mathematica
    Table[Times@@Prime/@Differences[Divisors[n]],{n,100}]

Formula

A056239(a(n)) = n - 1. In words, the integer partition with Heinz number a(n) is an integer partition of n - 1.
A055396(a(n)) = A060680(n).
A061395(a(n)) = A060681(n).
A001221(a(n)) = A060682(n).
A001222(a(n)) = A000005(n).

A259366 Numbers for which the differences between consecutive divisors (ordered by size) are not distinct.

Original entry on oeis.org

6, 12, 15, 18, 20, 24, 30, 36, 40, 42, 45, 48, 54, 56, 60, 63, 66, 70, 72, 75, 78, 80, 84, 90, 91, 96, 99, 100, 102, 105, 108, 110, 112, 114, 120, 126, 130, 132, 135, 138, 140, 144, 150, 156, 160, 162, 165, 168, 174, 180, 182, 186, 189, 192, 195, 198, 200
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 25 2015

Keywords

Examples

			.    n |  A193829(n,*)      |  A027750(n,*)         |
.  ----+--------------------+-----------------------+------------
.   10 |  {1,3,5}           |  {1,2,5,10}           |
.   11 |  {10}              |  {1,11}               |
.   12 |  {1,1,1,2,6}       |  {1,2,3,4,6,12}       |  a(2) = 12
.   13 |  {12}              |  {1,13}               |
.   14 |  {1,5,7}           |  {1,2,7,14}           |
.   15 |  {2,2,10}          |  {1,3,5,15}           |  a(3) = 15
.   16 |  {1,2,4,8}         |  {1,2,4,8,16}         |
.   17 |  {16}              |  {1,17}               |
.   18 |  {1,1,3,3,9}       |  {1,2,3,6,9,18}       |  a(4) = 18
.   19 |  {18}              |  {1,19}               |
.   20 |  {1,2,1,5,10}      |  {1,2,4,5,10,20}      |  a(5) = 20
.   21 |  {2,4,14}          |  {1,3,7,21}           |
.   22 |  {1,9,11}          |  {1,2,11,22}          |
.   23 |  {22}              |  {1,23}               |
.   24 |  {1,1,1,2,2,4,12}  |  {1,2,3,4,6,8,12,24}  |  a(6) = 24
.   25 |  {4,20}            |  {1,5,25}             |            .
		

Crossrefs

Cf. A193829, A027750, A060682, A000005, A060683 (complement), subsequence of A129512.

Programs

  • Haskell
    a259366 n = a259366_list !! (n-1)
    a259366_list = filter (\x -> a060682 x < a000005' x - 1) [2..]
  • Mathematica
    q[k_] := Module[{d = Differences[Divisors[k]]}, CountDistinct[d] < Length[d]]; Select[Range[200], q] (* Amiram Eldar, Jan 27 2025 *)

Formula

A060682(a(n)) < A000005(a(n)) - 1.

A328025 Irregular triangle read by rows where row n gives the differences between consecutive divisors of n in weakly decreasing order.

Original entry on oeis.org

1, 2, 2, 1, 4, 3, 1, 1, 6, 4, 2, 1, 6, 2, 5, 3, 1, 10, 6, 2, 1, 1, 1, 12, 7, 5, 1, 10, 2, 2, 8, 4, 2, 1, 16, 9, 3, 3, 1, 1, 18, 10, 5, 2, 1, 1, 14, 4, 2, 11, 9, 1, 22, 12, 4, 2, 2, 1, 1, 1, 20, 4, 13, 11, 1, 18, 6, 2, 14, 7, 3, 2, 1, 28, 15, 5, 4, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 02 2019

Keywords

Examples

			Triangle begins:
   {}
   1
   2
   2  1
   4
   3  1  1
   6
   4  2  1
   6  2
   5  3  1
  10
   6  2  1  1  1
  12
   7  5  1
  10  2  2
   8  4  2  1
  16
   9  3  3  1  1
  18
  10  5  2  1  1
For example, the divisors of 18 are {1,2,3,6,9,18}, with differences {1,1,3,3,9}, so row 18 is {9,3,3,1,1}.
		

Crossrefs

Same as A193829 with rows sorted in weakly decreasing order.
Same as A328027 with rows reversed.
Row sums are A001477.
Row lengths are A000005.
First column is A060681.
Heinz numbers of rows are A328023.

Programs

  • Mathematica
    Table[Sort[Differences[Divisors[n]],Greater],{n,30}]

A328027 Irregular triangle read by rows where row n lists, in weakly increasing order, the differences between consecutive divisors of n.

Original entry on oeis.org

1, 2, 1, 2, 4, 1, 1, 3, 6, 1, 2, 4, 2, 6, 1, 3, 5, 10, 1, 1, 1, 2, 6, 12, 1, 5, 7, 2, 2, 10, 1, 2, 4, 8, 16, 1, 1, 3, 3, 9, 18, 1, 1, 2, 5, 10, 2, 4, 14, 1, 9, 11, 22, 1, 1, 1, 2, 2, 4, 12, 4, 20, 1, 11, 13, 2, 6, 18, 1, 2, 3, 7, 14, 28, 1, 1, 1, 2, 4, 5, 15
Offset: 1

Views

Author

Gus Wiseman, Oct 02 2019

Keywords

Examples

			Triangle begins:
   {}
   1
   2
   1  2
   4
   1  1  3
   6
   1  2  4
   2  6
   1  3  5
  10
   1  1  1  2  6
  12
   1  5  7
   2  2 10
   1  2  4  8
  16
   1  1  3  3  9
  18
   1  1  2  5 10
   2  4 14
   1  9 11
  22
   1  1  1  2  2  4 12
For example, the divisors of 18 are {1,2,3,6,9,18}, with differences {1,1,3,3,9}, which is row 18.
		

Crossrefs

Same as A193829 with rows sorted in increasing order.
Same as A328025 with rows reversed.
Row sums are A001477.
Row lengths are A000005.
First column is A060680.

Programs

  • Mathematica
    Table[Sort[Differences[Divisors[n]]],{n,30}]

A060700 "Anomalous" numbers k such that for even numbers 2k, gcd(2k, lcm(dd(2k)))=2k and not k, where dd(2k) is the first difference set of divisors of 2k.

Original entry on oeis.org

15, 30, 35, 45, 63, 70, 75, 77, 91, 99, 105, 117, 126, 135, 140, 143, 150, 153, 154, 165, 175, 182, 187, 189, 195, 198, 209, 221, 225, 231, 234, 245, 247, 252, 255, 273, 280, 285, 286, 297, 299, 306, 308, 315, 323, 325, 330, 345, 350, 351, 357, 364, 374, 375
Offset: 1

Views

Author

Labos Elemer, Apr 25 2001

Keywords

Examples

			63 is here because for 126 = 2*63, lcm(dd(126)) = lcm(1, 1, 3, 1, 2, 5, 4, 3, 21, 21, 63) = 1260, so gcd(126, lcm(dd(126))) = gcd(126, 1260) = 126.
		

Crossrefs

Programs

  • PARI
    f(n) = {my(d = divisors(n), dd = vector(#d-1, k, d[k+1] - d[k])); gcd(n, lcm(dd));}
    isok(n) = (f(2*n) == 2*n); \\ Michel Marcus, Mar 29 2018
Previous Showing 11-19 of 19 results.