A132684
a(n) = binomial(2^n + n + 1, n).
Original entry on oeis.org
1, 4, 21, 220, 5985, 501942, 143218999, 145944307080, 542150225230185, 7398714129087308170, 372134605932348010322571, 69146263065062394421802892300, 47589861944854471977019273909187085
Offset: 0
From _Paul D. Hanna_, Feb 25 2009: (Start)
G.f.: A(x) = 1 + 4*x + 21*x^2 + 220*x^3 + 5985*x^4 + 501942*x^5 +...
A(x) = 1/(1-x)^2 - log(1-2x)/(1-2x)^2 + log(1-4x)^2/((1-4x)^2*2!) - log(1-8x)^3/((1-8x)^2*3!) +- ... (End)
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0), this sequence (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n +n+1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
A132684:= n-> binomial(2^n +n+1, n); seq(A132684(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
Table[Binomial[2^n+n+1,n],{n,0,20}] (* Harvey P. Dale, Nov 10 2011 *)
-
a(n)=binomial(2^n+n+1,n)
-
{a(n)=polcoeff(sum(m=0,n,(-log(1-2^m*x))^m/((1-2^m*x +x*O(x^n))^2*m!)),n)} \\ Paul D. Hanna, Feb 25 2009
-
[binomial(2^n +n+1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A132685
a(n) = binomial(2^n + 2*n, n).
Original entry on oeis.org
1, 4, 28, 364, 10626, 850668, 218618940, 198773423848, 669741609663270, 8493008777332033900, 405943250253048290447028, 72938914603968404495709630360, 49143490709866058459392200362497820
Offset: 0
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1), this sequence (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n+2*n,n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
A132695:= n-> binomial(2^n +2*n,n); seq(A132685(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
Table[Binomial[2^n+2n,n],{n,0,20}] (* Harvey P. Dale, Jun 01 2016 *)
-
a(n)=binomial(2^n+2*n,n)
-
[binomial(2^n+2*n,n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A132686
a(n) = binomial(2^n + 2*n + 1, n).
Original entry on oeis.org
1, 5, 36, 455, 12650, 962598, 237093780, 209004408899, 689960224294614, 8639439963148103450, 409865407260324119340236, 73328394245057556170201283726, 49287010273876375495535472789937580
Offset: 0
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0), this sequence (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n +2*n +1, n): n in [0..20]]; // G. C. Greubel, Mar 13 2021
-
Table[Binomial[2^n +2*n +1, n], {n,0,20}] (* G. C. Greubel, Mar 13 2021 *)
-
a(n)=binomial(2^n+2*n+1,n)
-
[binomial(2^n +2*n +1, n) for n in (0..20)] # G. C. Greubel, Mar 13 2021
A132687
a(n) = binomial(2^n + 3*n - 1, n).
Original entry on oeis.org
1, 4, 36, 560, 17550, 1370754, 324540216, 267212177232, 822871715492970, 9728874233306696390, 442491588454024774291770, 76919746769405407508866898400, 50743487119356450255156023756871000
Offset: 0
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1), this sequence (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n +3*n -1, n): n in [0..20]]; // G. C. Greubel, Mar 13 2021
-
Table[Binomial[2^n+3n-1,n],{n,0,20}] (* Harvey P. Dale, Sep 07 2017 *)
-
a(n)=binomial(2^n+3*n-1,n)
-
[binomial(2^n +3*n -1, n) for n in (0..20)] # G. C. Greubel, Mar 13 2021
A132688
a(n) = binomial(2^n + 3*n, n).
Original entry on oeis.org
1, 5, 45, 680, 20475, 1533939, 350161812, 280384608504, 847073824772175, 9894081531608130857, 446730013630787463700695, 77328499046923986969058944720, 50891283683781760304442885961988100
Offset: 0
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1), this sequence (3,0),
A132689 (3,1).
-
[Binomial(2^n +3*n, n): n in [0..20]]; // G. C. Greubel, Mar 13 2021
-
Table[Binomial[2^n+3n,n],{n,0,20}] (* Harvey P. Dale, Oct 30 2018 *)
-
a(n)=binomial(2^n+3*n,n)
-
[binomial(2^n +3*n, n) for n in (0..20)] # G. C. Greubel, Mar 13 2021
A132689
a(n) = binomial(2^n + 3*n + 1, n).
Original entry on oeis.org
1, 6, 55, 816, 23751, 1712304, 377447148, 294109729200, 871896500955975, 10061777828754031380, 451004941990890693018405, 77739225019650285306412710240, 51039474754930845750609669420261300
Offset: 0
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2),
A060690 (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0), this sequence (3,1).
-
[Binomial(2^n+3*n+1, n) : n in [0..15]]; // Wesley Ivan Hurt, Nov 20 2014
-
A132689:=n->binomial(2^n+3*n+1, n): seq(A132689(n), n=0..15); # Wesley Ivan Hurt, Nov 20 2014
-
Table[Binomial[2^n +3n +1, n], {n, 0, 15}] (* Wesley Ivan Hurt, Nov 20 2014 *)
-
a(n)=binomial(2^n+3*n+1,n)
-
[binomial(2^n +3*n+1, n) for n in (0..15)] # G. C. Greubel, Feb 15 2021
A086675
Number of n X n (0,1)-matrices modulo cyclic permutations of the rows.
Original entry on oeis.org
1, 2, 10, 176, 16456, 6710912, 11453291200, 80421421917440, 2305843009750581376, 268650182136584290872320, 126765060022823052739661424640, 241677817415439249618874010960064512, 1858395433210885261795036719974526548094976
Offset: 0
Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 27 2003
From _Gus Wiseman_, Mar 04 2019: (Start)
Inequivalent representatives of the a(2) = 10 digraphical necklace edge-sets:
{}
{(1,1)}
{(1,2)}
{(1,1),(1,2)}
{(1,1),(2,1)}
{(1,1),(2,2)}
{(1,2),(2,1)}
{(1,1),(1,2),(2,1)}
{(1,1),(1,2),(2,2)}
{(1,1),(1,2),(2,1),(2,2)}
(End)
-
Table[Fold[ #1+EulerPhi[ #2] 2^(n^2 /#2)&, 0, Divisors[n]]/n, {n, 16}]
(* second program *)
rotdigra[g_,m_]:=Sort[g/.k_Integer:>If[k==m,1,k+1]];
Table[Length[Select[Subsets[Tuples[Range[n],2]],#=={}||#==First[Sort[Table[Nest[rotdigra[#,n]&,#,j],{j,n}]]]&]],{n,0,4}] (* Gus Wiseman, Mar 04 2019 *)
A137153
Triangle, read by rows, where T(n,k) = C(2^k + n-k-1, n-k).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 10, 8, 1, 1, 5, 20, 36, 16, 1, 1, 6, 35, 120, 136, 32, 1, 1, 7, 56, 330, 816, 528, 64, 1, 1, 8, 84, 792, 3876, 5984, 2080, 128, 1, 1, 9, 120, 1716, 15504, 52360, 45760, 8256, 256, 1, 1, 10, 165, 3432, 54264, 376992, 766480, 357760, 32896
Offset: 0
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 4, 1;
1, 4, 10, 8, 1;
1, 5, 20, 36, 16, 1;
1, 6, 35, 120, 136, 32, 1;
1, 7, 56, 330, 816, 528, 64, 1;
1, 8, 84, 792, 3876, 5984, 2080, 128, 1;
1, 9, 120, 1716, 15504, 52360, 45760, 8256, 256, 1;
1, 10, 165, 3432, 54264, 376992, 766480, 357760, 32896, 512, 1;
...
Cf.
A092056 (same with reflected rows).
-
Table[Binomial[2^k+n-k-1,n-k],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Mar 06 2017 *)
-
{T(n,k)=binomial(2^k+n-k-1,n-k)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
{T(n, k) = polcoeff(1/(1-x+x*O(x^n))^(2^k), n-k)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
A089006
Number of distinct n X n (0,1) matrices after double sorting: by row, by column, by row .. until reaching a fixed point.
Original entry on oeis.org
1, 2, 7, 45, 650, 24520, 2625117, 836488618, 818230288201, 2513135860300849, 24686082394548211147, 787959836124458000837941, 82905574521614049485027140026
Offset: 0
The 7 (2 X 2)-matrices are {{0,0},{0,0}}, {{0,0},{0,1}}, {{0,0},{1,1}}, {{0,1},{0,1}}, {{0,1},{1,0}}, {{0,1},{1,1}} and {{1,1},{1,1}}.
- Adolf Mader and Otto Mutzbauer, "Double Orderings of (0,1) Matrices", Ars Combinatoria v. 61 (2001) pp 81-95.
-
baseform[li_List] := FixedPoint[Sort[Transpose[Sort[Transpose[Sort[ #1]]]]]&, li]; Table[Length@Split[Sort[baseform/@(Partition[ #, n]&/@(IntegerDigits[Range[0, -1+2^n^2], 2, n^2]))]], {n, 4}]
a(6)-a(12) found by
R. H. Hardin, May 08 2008. These terms were found using bdd's (binary decision diagrams), just setting up the logical relations between bits in a gigantic bdd expression and using that to count the satisfying states.
A092056
Square table read by downward antidiagonals where T(n,k) = binomial(n+2^k-1,n).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 10, 4, 1, 1, 16, 36, 20, 5, 1, 1, 32, 136, 120, 35, 6, 1, 1, 64, 528, 816, 330, 56, 7, 1, 1, 128, 2080, 5984, 3876, 792, 84, 8, 1, 1, 256, 8256, 45760, 52360, 15504, 1716, 120, 9, 1, 1, 512, 32896, 357760, 766480, 376992, 54264, 3432, 165, 10, 1
Offset: 0
Rows start:
1, 1, 1, 1, 1, 1, 1,...
1, 2, 4, 8, 16, 32, 64,...
1, 3, 10, 36, 136, 528, 2080,...
1, 4, 20, 120, 816, 5984, 45760,...
1, 5, 35, 330, 3876, 52360, 766480,...
...
Cf.
A137153 (same with reflected antidiagonals).
Comments