A060690
a(n) = binomial(2^n + n - 1, n).
Original entry on oeis.org
1, 2, 10, 120, 3876, 376992, 119877472, 131254487936, 509850594887712, 7145544812472168960, 364974894538906616240640, 68409601066028072105113098240, 47312269462735023248040155132636160, 121317088003402776955124829814219234385920
Offset: 0
Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001
Sequences of the form binomial(2^n +p*n +q, n):
A136556 (0,-1),
A014070 (0,0),
A136505 (0,1),
A136506 (0,2), this sequence (1,-1),
A132683 (1,0),
A132684 (1,1),
A132685 (2,0),
A132686 (2,1),
A132687 (3,-1),
A132688 (3,0),
A132689 (3,1).
-
[Binomial(2^n +n-1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
with(combinat): for n from 0 to 20 do printf(`%d,`,binomial(2^n+n-1, n)) od:
-
Table[Binomial[2^n+n-1,n],{n,0,20}] (* Harvey P. Dale, Apr 19 2012 *)
-
a(n)=binomial(2^n+n-1,n)
-
{a(n)=polcoeff(sum(k=0,n,(-log(1-2^k*x +x*O(x^n)))^k/k!),n)} \\ Paul D. Hanna, Dec 29 2007
-
a(n) = sum(k=0, n, stirling(n,k,1)*(2^n+n-1)^k/n!); \\ Paul D. Hanna, Nov 20 2014
-
from math import comb
def A060690(n): return comb((1<Chai Wah Wu, Jul 05 2024
-
[binomial(2^n +n-1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
A137153
Triangle, read by rows, where T(n,k) = C(2^k + n-k-1, n-k).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 10, 8, 1, 1, 5, 20, 36, 16, 1, 1, 6, 35, 120, 136, 32, 1, 1, 7, 56, 330, 816, 528, 64, 1, 1, 8, 84, 792, 3876, 5984, 2080, 128, 1, 1, 9, 120, 1716, 15504, 52360, 45760, 8256, 256, 1, 1, 10, 165, 3432, 54264, 376992, 766480, 357760, 32896
Offset: 0
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 4, 1;
1, 4, 10, 8, 1;
1, 5, 20, 36, 16, 1;
1, 6, 35, 120, 136, 32, 1;
1, 7, 56, 330, 816, 528, 64, 1;
1, 8, 84, 792, 3876, 5984, 2080, 128, 1;
1, 9, 120, 1716, 15504, 52360, 45760, 8256, 256, 1;
1, 10, 165, 3432, 54264, 376992, 766480, 357760, 32896, 512, 1;
...
Cf.
A092056 (same with reflected rows).
-
Table[Binomial[2^k+n-k-1,n-k],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Mar 06 2017 *)
-
{T(n,k)=binomial(2^k+n-k-1,n-k)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
{T(n, k) = polcoeff(1/(1-x+x*O(x^n))^(2^k), n-k)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
A092055
a(n) = binomial(2 + 2^n,3).
Original entry on oeis.org
1, 4, 20, 120, 816, 5984, 45760, 357760, 2829056, 22500864, 179481600, 1433753600, 11461636096, 91659526144, 733141975040, 5864598896640, 46914643623936, 375308558925824, 3002434111406080, 24019335451770880, 192154133857304576, 1537230871833083904, 12297838178567454720
Offset: 0
a(5) = C(2+2^5,3) = C(34,3) = 5984.
-
[Binomial(2^n+2, 3): n in [0..30]]; // G. C. Greubel, Dec 27 2024
-
seq(binomial(2+2^n, 3), n=0..25); # Zerinvary Lajos, Feb 22 2008
-
nn=20;Table[Coefficient[Series[1/(1-x)^(2^n),{x,0,nn}],x^3],{n,0,nn}] (* Geoffrey Critzer, Jul 10 2013 *)
Binomial[2+2^Range[0,30], 3] (* G. C. Greubel, Dec 27 2024 *)
-
Vec((1-10*x+20*x^2)/((1-2*x)*(1-4*x)*(1-8*x)) + O(x^100)) \\ Colin Barker, Sep 13 2014
-
def A092055(n): return binomial(pow(2,n)+2,3)
print([A092055(n) for n in range(41)]) # G. C. Greubel, Dec 27 2024
A383902
Square table read by ascending antidiagonals where T(n,k) = binomial(k+2^n-2,k).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 1, 15, 28, 10, 1, 0, 1, 31, 120, 84, 15, 1, 0, 1, 63, 496, 680, 210, 21, 1, 0, 1, 127, 2016, 5456, 3060, 462, 28, 1, 0, 1, 255, 8128, 43680, 46376, 11628, 924, 36, 1, 0, 1, 511, 32640, 349504, 720720, 324632, 38760, 1716, 45, 1, 0
Offset: 0
Rows start:
1, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, ...
1, 3, 6, 10, 15, ...
1, 7, 28, 84, 210, ...
1, 15, 120, 680, 3060, ...
Cf.
A383905 (descending diagonals),
A092056 (no restriction on totality)
-
T:= (n, k)-> binomial(k+2^n-2, k):
seq(seq(T(d-k, k), k=0..d), d=0..10); # Alois P. Heinz, May 16 2025
Showing 1-4 of 4 results.
Comments