cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A054584 Number of subgroups of the group generated by a^n=1, b^3=1 and ab=ba.

Original entry on oeis.org

2, 4, 6, 6, 4, 12, 4, 8, 10, 8, 4, 18, 4, 8, 12, 10, 4, 20, 4, 12, 12, 8, 4, 24, 6, 8, 14, 12, 4, 24, 4, 12, 12, 8, 8, 30, 4, 8, 12, 16, 4, 24, 4, 12, 20, 8, 4, 30, 6, 12, 12, 12, 4, 28, 8, 16, 12, 8, 4, 36, 4, 8, 20, 14, 8, 24, 4, 12, 12, 16, 4, 40, 4, 8, 18, 12, 8, 24, 4, 20, 18, 8, 4
Offset: 1

Views

Author

John W. Layman, Apr 12 2000

Keywords

Comments

Also the number of subgroups of the group C_n X C_3 (where C_n is the cyclic group of order n). Number of subgroups of the group C_n X C_m is Sum_{i|n,j|m} gcd(i,j).

Crossrefs

Programs

  • Haskell
    a054584 n = a000005 n + 3 * a079978 n * a000005 (a051176 n) + a035191 n
    -- Reinhard Zumkeller, Aug 27 2012
  • Maple
    for n from 1 to 500 do a := ifactors(n):s := 1:for k from 1 to nops(a[2]) do p := a[2][k][1]:e := a[2][k][2]: if p=3 then b := 2*e+1:else b := e+1:fi:s := s*b:od:printf(`%d,`,2*s); od:
  • Mathematica
    f[d_ /; Mod[d, 3] == 0] = 4; f[] = 2; a[n] := Total[f /@ Divisors[n]]; Table[a[n], {n, 1, 100}](* Jean-François Alcover, Nov 21 2011, after Michael Somos *)
    f[p_, e_] := e + 1; f[3, e_] := 2*e + 1; a[1] = 2; a[n_] := 2*Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 29 2022 *)
  • PARI
    a(n)=if(n<1, 0, sumdiv(n,d, (d%3==0)*2+2)) /* Michael Somos, Sep 20 2005 */
    

Formula

a(n) = tau(n)+3*tau(n/3)+A035191(n) if n is congruent to 0 mod 3 else tau(n)+A035191(n), where A035191(n) is the number of divisors of n that are not congruent to 0 mod 3.
a(n)/2 is multiplicative with a(3^e)=2e+1 and a(p^e)=e+1 for p<>3.
Moebius transform is period 3 sequence [2, 2, 4, ...]. - Michael Somos, Sep 20 2005
G.f.: Sum_{k>0} x^k(2+2*x^k+4*x^(2k))/(1-x^(3k)).
From Amiram Eldar, Nov 29 2022: (Start)
Dirichlet g.f.: 2 * zeta(s)^2 * (1 + 1/3^s).
Sum_{k=1..n} a(k) ~ 2*(4*n*log(n) + (8*gamma - 4 - log(3))*n)/3, where gamma is Euler's constant (A001620). (End)

Extensions

Additional comments from Vladeta Jovovic, Oct 25 2001

A064803 Number of subgroups of the group C_n X C_n X C_n (where C_n is the cyclic group of order n).

Original entry on oeis.org

1, 16, 28, 129, 64, 448, 116, 802, 445, 1024, 268, 3612, 368, 1856, 1792, 4387, 616, 7120, 764, 8256, 3248, 4288, 1108, 22456, 2607, 5888, 5776, 14964, 1744, 28672, 1988, 22308, 7504, 9856, 7424, 57405, 2816, 12224, 10304, 51328, 3448, 51968, 3788, 34572, 28480, 17728, 4516, 122836, 9009, 41712
Offset: 1

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Oct 21 2001

Keywords

Crossrefs

Programs

  • Maple
    A064803 := proc(n)
        local a,f,nu,p,j ;
        a := 1 ;
        for f in ifactors(n)[2] do
            nu := op(2,f) ;
            p := op(1,f) ;
            add( (nu-floor((j-1)/2))*(2*j-floor((j-1)/2))*p^(2*nu-j),j=0..2*nu) ;
            a := a*% ;
        end do:
        a ;
    end proc: # R. J. Mathar, May 11 2013
  • Mathematica
    f[p_, e_] := Sum[(e - Floor[(j - 1)/2])*(2*j - Floor[(j - 1)/2])*p^(2*e - j), {j, 0, 2*e}]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 29 2022 *)

Formula

For a prime p: a(p) = 2*(p^2+p+2). - Vladeta Jovovic, Oct 22 2001
Multiplicative with a(p^e) = Sum_{j=0..2*e} (e - floor((j - 1)/2))*(2*j - floor((j - 1)/2))*p^(2*e - j). - Amiram Eldar, Nov 29 2022

Extensions

More terms from Laszlo Toth, May 11 2013

A344135 a(n) = Sum_{i|n, j|n, k|n} i*j*k/lcm(i,j,k).

Original entry on oeis.org

1, 14, 22, 93, 44, 308, 74, 472, 259, 616, 158, 2046, 212, 1036, 968, 2123, 344, 3626, 422, 4092, 1628, 2212, 602, 10384, 1227, 2968, 2548, 6882, 932, 13552, 1058, 9006, 3476, 4816, 3256, 24087, 1484, 5908, 4664, 20768, 1808, 22792, 1982, 14694, 11396, 8428, 2354, 46706, 3843, 17178, 7568
Offset: 1

Views

Author

Seiichi Manyama, May 10 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= Sum[i*j*k/LCM[i,j,k], {i, (d = Divisors[n])}, {j, d}, {k, d}]; Array[a, 50] (* Amiram Eldar, May 10 2021 *)
  • PARI
    a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, i*j*k/lcm([i, j, k]))));

Formula

If p is prime, a(p) = 4 + 3*p + p^2.

A280162 Number of subgroups of the group C_n x C_n x C_n x C_n, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 67, 212, 1983, 1120, 14204, 3652, 43339, 24033, 75040, 19156, 420396, 35872, 244684, 237440, 821335, 99472, 1610211, 152404, 2220960, 774224, 1283452, 318532, 9187868, 810969, 2403424, 2222704, 7241916, 783904, 15908480, 1016836, 14445411, 4061072, 6664624, 4090240, 47657439, 2031712
Offset: 1

Views

Author

Laszlo Toth, Dec 27 2016

Keywords

Crossrefs

Programs

  • PARI
    \\ For numsubgrp, see the Alekseyev link.
    a(n)=my(f=factor(n)); prod(i=1,#f~, numsubgrp(f[i,1],f[i,2]*[1,1,1,1])) \\ Charles R Greathouse IV, Dec 27 2016

Extensions

Terms a(32) and beyond from Charles R Greathouse IV, Dec 27 2016

A068984 a(n) = Sum_{d|n} d*tau(d)^2.

Original entry on oeis.org

1, 9, 13, 45, 21, 117, 29, 173, 94, 189, 45, 585, 53, 261, 273, 573, 69, 846, 77, 945, 377, 405, 93, 2249, 246, 477, 526, 1305, 117, 2457, 125, 1725, 585, 621, 609, 4230, 149, 693, 689, 3633, 165, 3393, 173, 2025, 1974, 837, 189, 7449, 470, 2214, 897
Offset: 1

Views

Author

Vladeta Jovovic, Apr 01 2002

Keywords

Crossrefs

Programs

  • Magma
    [&+[d*#Divisors(d)^2: d in Divisors(n)]:n in [1..51]]; // Marius A. Burtea, Sep 15 2019
  • Mathematica
    a[n_] := DivisorSum[n, # * DivisorSigma[0, #]^2 &]; Array[a, 100] (* Amiram Eldar, Sep 15 2019 *)
  • PARI
    a(n) = sumdiv(n, d, d*numdiv(d)^2) \\ Michel Marcus, Jun 17 2013
    

Formula

Multiplicative with a(p^e) = (p^(e+3)-3*p^(e+2)+4*p^(e+1)-p-1+2*p^(e+3)*e-6*p^(e+2)*e+4*p^(e+1)*e+p^(e+3)*e^2-2*p^(e+2)*e^2+p^(e+1)*e^2)/(p-1)^3.

A360430 Dirichlet convolution of Dedekind psi by A038040.

Original entry on oeis.org

1, 7, 10, 30, 16, 70, 22, 104, 63, 112, 34, 300, 40, 154, 160, 320, 52, 441, 58, 480, 220, 238, 70, 1040, 165, 280, 324, 660, 88, 1120, 94, 912, 340, 364, 352, 1890, 112, 406, 400, 1664, 124, 1540, 130, 1020, 1008, 490, 142, 3200, 315, 1155
Offset: 1

Views

Author

R. J. Mathar, Feb 07 2023

Keywords

Crossrefs

Programs

  • Maple
    A360430 := proc(n)
        add(A001615(n/d)*numtheory[tau](d)*d,d=numtheory[divisors](n)) ;
    end proc:
  • Mathematica
    f[p_, e_] := ((e+2)*p + e)*(e+1)*p^(e-1)/2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 09 2023 *)

Formula

a(n) = Sum_{d|n} A001615(n/d)*A000005(d)*d.
Dirichlet g.f.: zeta(s-1)^3*zeta(s)/zeta(2*s).
Dirichlet convolution of A008966 by A034718.
Multiplicative with a(p^e) = ((e+2)*p + e)*(e+1)*p^(e-1)/2. - Amiram Eldar, Feb 09 2023
Previous Showing 11-16 of 16 results.