A171531 Irregular triangle read by rows: first row is 1, n-th row (n > 0) consists of the coefficients in the expansion of H(x;n)*(x + 1)^(n - 1)/2^floor(n/2), where H(x;n) is the Hermite polynomial of order n.
1, 0, 2, -1, -1, 2, 2, 0, -6, -12, -2, 8, 4, 3, 9, -3, -33, -32, 0, 12, 4, 0, 30, 120, 140, -40, -202, -128, 8, 32, 8, -15, -75, -60, 300, 765, 585, -142, -470, -220, 20, 40, 8, 0, -210, -1260, -2730, -1680, 2982, 6132, 3586, -744, -1860, -688, 72, 96, 16, 105, 735, 1365
Offset: 0
Examples
Triangle begins: 1; 0, 2; -1, -1, 2, 2; 0, -6, -12, -2, 8, 4; 3, 9, -3, -33, -32, 0, 12, 4; 0, 30, 120, 140, -40, -202, -128, 8, 32, 8; -15, -75, -60, 300, 765, 585, -142, -470, -220, 20, 40, 8; ... reformatted. - _Franck Maminirina Ramaharo_, Oct 02 2018
Links
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 695.
Programs
-
Mathematica
Join[{1},Table[CoefficientList[HermiteH[n,x]*(x + 1)^(n - 1)/2^Floor[n/2], x], {n, 1, 12}]]//Flatten
Extensions
Edited and new name by Franck Maminirina Ramaharo, Oct 02 2018
Comments