cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A171531 Irregular triangle read by rows: first row is 1, n-th row (n > 0) consists of the coefficients in the expansion of H(x;n)*(x + 1)^(n - 1)/2^floor(n/2), where H(x;n) is the Hermite polynomial of order n.

Original entry on oeis.org

1, 0, 2, -1, -1, 2, 2, 0, -6, -12, -2, 8, 4, 3, 9, -3, -33, -32, 0, 12, 4, 0, 30, 120, 140, -40, -202, -128, 8, 32, 8, -15, -75, -60, 300, 765, 585, -142, -470, -220, 20, 40, 8, 0, -210, -1260, -2730, -1680, 2982, 6132, 3586, -744, -1860, -688, 72, 96, 16, 105, 735, 1365
Offset: 0

Views

Author

Roger L. Bagula, Dec 11 2009

Keywords

Examples

			Triangle begins:
    1;
    0,   2;
   -1,  -1,   2,   2;
    0,  -6, -12,  -2,   8,    4;
    3,   9,  -3, -33, -32,    0,   12,    4;
    0,  30, 120, 140, -40, -202, -128,    8,   32,  8;
  -15, -75, -60, 300, 765,  585, -142, -470, -220, 20, 40, 8;
   ... reformatted. - _Franck Maminirina Ramaharo_, Oct 02 2018
		

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[CoefficientList[HermiteH[n,x]*(x + 1)^(n - 1)/2^Floor[n/2], x], {n, 1, 12}]]//Flatten

Extensions

Edited and new name by Franck Maminirina Ramaharo, Oct 02 2018

A176410 A symmetrical triangle of adjusted polynomial coefficients based on Hermite orthogonal polynomials.

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, -191, 2113, -191, 1, 1, 1, 1, 1, 1, 1, 1, 7681, -337919, 7681, -337919, 7681, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -430079, 47738881, -430079, 180203521, -430079, 47738881, -430079, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 16 2010

Keywords

Comments

Row sums are: {1, 2, 11, 4, 1733, 6, -652793, 8, 273960969, 10, -143712092149, ...}.

Examples

			Triangle begins as:
  1;
  1,    1;
  1,    9,       1;
  1,    1,       1,    1;
  1, -191,    2113, -191,       1;
  1,    1,       1,    1,       1,    1;
  1, 7681, -337919, 7681, -337919, 7681, 1;
  1,    1,       1,    1,       1,    1, 1, 1;
		

Crossrefs

Cf. A060821.

Programs

  • Mathematica
    T[n_, m_]:= CoefficientList[HermiteH[n, x], x][[m + 1]]Reverse[ CoefficientList[ HermiteH[n, x], x]][[m + 1]] - (CoefficientList[ HermiteH[n, x], x][[1]]Reverse[CoefficientList[HermiteH[n, x], x]][[1]]) + 1;
    Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten

Extensions

Edited by G. C. Greubel, Apr 26 2019

A328141 a(n) = a(n-1) - (n-2)*a(n-2), with a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 2, 0, -4, -4, 12, 32, -40, -264, 56, 2432, 1872, -24880, -47344, 276096, 938912, -3202528, -18225120, 36217856, 364270016, -323869248, -7609269568, -808015360, 166595915136, 185180268416, -3813121694848, -8442628405248, 90698535660800, 318649502602496, -2220909495899904
Offset: 0

Views

Author

G. C. Greubel, Oct 04 2019

Keywords

Comments

Former title and formula of A122033, but not the data.

Crossrefs

Programs

  • GAP
    a:=[1,2];; for n in [3..35] do a[n]:=a[n-1]-(n-3)*a[n-2]; od; a;
  • Magma
    I:=[1,2]; [n le 2 select I[n] else Self(n-1) - (n-3)*Self(n-2): n in [1..35]];
    
  • Maple
    a:= proc (n) option remember;
    if n < 2 then n+1
    else a(n-1) - (n-2)*a(n-2)
    fi;
    end proc; seq(a(n), n = 0..35);
  • Mathematica
    a[n_]:= a[n]= If[n<2, n+1, a[n-1]-(n-2)*a[n-2]]; Table[a[n], {n,0,35}]
  • PARI
    my(m=35, v=concat([1,2], vector(m-2))); for(n=3, m, v[n] = v[n-1] - (n-3)*v[n-2] ); v
    
  • Sage
    def a(n):
        if n<2: return n+1
        else: return a(n-1) - (n-2)*a(n-2)
    [a(n) for n in (0..35)]
    

Formula

a(n) = a(n-1) - (n-2)*a(n-2), with a(0)=1, a(1)=2.
E.g.f.: 1 + sqrt(2*e*Pi)*( erf(1/sqrt(2)) + erf((x-1)/sqrt(2)) ), where erf(x) is the error function.
a(n) = 2*(-1)^(n-1)*A001464(n-1).
a(n) = 2*(1/sqrt(2))^(n-1) * Hermite(n-1, 1/sqrt(2)), n > 0.

A381737 Orders k of Hermite polynomials whose maximal coefficient in absolute value appears twice.

Original entry on oeis.org

8, 13, 34, 43, 76, 89, 134, 151, 208, 229, 298, 323, 404, 433, 526, 559, 664, 701, 818, 859, 988, 1033, 1174, 1223, 1376, 1429, 1594, 1651, 1828, 1889, 2078, 2143, 2344, 2413, 2626, 2699, 2924, 3001, 3238, 3319, 3568, 3653, 3914, 4003, 4276, 4369, 4654, 4751, 5048
Offset: 1

Views

Author

Mike Sheppard, Mar 05 2025

Keywords

Examples

			H_8(x) = 1680 - 13440 x^2 + 13440 x^4 - 3584 x^6 + 256 x^8, maximum coefficient in absolute value is 13440, which appears twice. Hence 8 is a term.
H_6(x) = -120 + 720 x^2 - 480 x^4 + 64 x^6. Absolute maximum unique. Hence 6 is not a term.
		

Crossrefs

Programs

  • Mathematica
    Flatten@Position[Table[Count[#, Max@#] &@Abs@CoefficientList[HermiteH[n, x], x], {n, 1000}], 2]
  • PARI
    isok(k) = my(vp=apply(x->abs(x), Vec(polhermite(k))), m=vecmax(vp)); #select(x->(x==m), vp) == 2; \\ Michel Marcus, Mar 09 2025

Formula

Conjecture 1: a(n) = 2*n*(n + 2) + (n + 1)*(-1)^(n+1).
Conjecture 2: a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
Conjecture 3: G.f.: (8*x + 5*x^2 + 5*x^3 - x^4 - x^5) / ((1 - x)^3 * (1 + x)^2).
Terms < 20000 consistent with conjectures. - Jinyuan Wang, Mar 09 2025.

A067613 Triangular table of coefficients of the Hermite polynomials, divided by 2^floor(n/2).

Original entry on oeis.org

1, 0, -2, -1, 0, 2, 0, 6, 0, -4, 3, 0, -12, 0, 4, 0, -30, 0, 40, 0, -8, -15, 0, 90, 0, -60, 0, 8, 0, 210, 0, -420, 0, 168, 0, -16, 105, 0, -840, 0, 840, 0, -224, 0, 16, 0, -1890, 0, 5040, 0, -3024, 0, 576, 0, -32, -945, 0, 9450, 0, -12600, 0, 5040, 0, -720, 0, 32, 0, 20790, 0, -69300, 0, 55440, 0, -15840, 0, 1760, 0, -64
Offset: 0

Views

Author

Wouter Meeussen, Feb 01 2002

Keywords

Comments

Series development of exp(-(c+x)^2) at x=0 gives a Hermite polynomial in c as coefficient for x^k.

Crossrefs

Cf. A060821.

Programs

  • Maple
    S:=series(exp(-2*c*x-x^2),x,13):
    seq(seq(coeff(coeff(S,x,n)*n!/2^floor(n/2),c,j),j=0..n),n=0..12); # Robert Israel, Dec 07 2018
  • Mathematica
    Table[ CoefficientList[ HermiteH[ n, c ], c ](-1)^n/2^Floor[ n/2 ], {n, 0, 12} ] (* or, equivalently *) a1=CoefficientList[ Series[ Exp[ c^2 ]Exp[ -(c+x)^2 ], {x, 0, 12} ], x ]; a2=(CoefficientList[ #, c ]&/@ a1 ) Range[ 0, 12 ]! 2^-Floor[ Range[ 0, 12 ]/2 ]
  • PARI
    row(n) = Vecrev((-1)^n*polhermite(n)/2^floor(n/2)) \\ Michel Marcus, Dec 07 2018

Formula

HermiteH[n, c](-1)^n / 2^Floor[n/2]

A139158 Triangle a(n,k) of the expansion coefficients of the Hermite polynomial 2*H(n/2,x) if n even, of H((n-1)/2,x)+H((n+1)/2,x) if n odd.

Original entry on oeis.org

2, 1, 2, 0, 4, -2, 2, 4, -4, 0, 8, -2, -12, 4, 8, 0, -24, 0, 16, 12, -12, -48, 8, 16, 24, 0, -96, 0, 32, 12, 120, -48, -160, 16, 32, 0, 240, 0, -320, 0, 64, -120, 120, 720, -160, -480, 32, 64, -240, 0, 1440, 0, -960, 0, 128, -120, -1680, 720, 3360, -480, -1344, 64, 128, 0, -3360, 0, 6720, 0, -2688
Offset: 0

Views

Author

Roger L. Bagula, Jun 05 2008

Keywords

Comments

Coefficients are ordered along increasing exponents [x^k], k=0,...,floor((n+1)/2).
Row sums are 2, 3, 4, 4, 4, -2, -8, -24, -40, -28, -16,..

Examples

			{2}, = 2
{1, 2}, = 1+2x
{0, 4}, = 4x^2
{-2, 2, 4}, = -2+2x+4x^2
{-4, 0, 8}, = -4+8x^2
{-2, -12, 4, 8},
{0, -24, 0, 16},
{12, -12, -48, 8, 16},
{24, 0, -96, 0, 32},
{12, 120, -48, -160, 16, 32},
{0, 240, 0, -320, 0, 64}.
		

Crossrefs

Cf. A060821.

Programs

  • Maple
    A060821 := proc(n,k) orthopoly[H](n,x) ; coeftayl(%,x=0,k) ; end:
    A139158 := proc(n,k) if type(n,'even') then 2*A060821(n/2,k) ; else A060821((n+1)/2-1,k)+A060821((n+1)/2,k) ; fi; end: seq( seq(A139158(n,k),k=0..(n+1)/2),n=0..15) ;
  • Mathematica
    Clear[p, x] p[x, 0] = 2*HermiteH[0, x]; p[x, 1] = HermiteH[0, x] + HermiteH[1, x]; p[x, 2] = 2*HermiteH[1, x]; p[x_, m_] := p[x, m] = If[Mod[m, 2] == 0, 2*HermiteH[Floor[m/2], x], HermiteH[ Floor[m/2], x] + HermiteH[Floor[m/ 2 + 1], x]];
    Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}];
    Flatten[a] Table[Apply[Plus, CoefficientList[p[x, n], x]], {n, 0, 10}]

Formula

a(2*n,k) = 2* A060821(n,k). a(2*n-1,k) = A060821(n-1,k)+A060821(n,k) .
sum_{k=0..n} a(2*n,k) = 2*A062267(n).
sum_{k=0..n} a(2*n-1,k) = A062267(n) + A062267(n-1).

Extensions

Edited by the Associate Editors of the OEIS, Aug 28 2009

A181088 a(n) = A181089(2*n+1,n)/(n+2).

Original entry on oeis.org

1, -4, -40, 672, 8064, -253440, -3294720, 153753600, 2091048960, -130025226240, -1820353167360, 141707492720640, 2024392753152000, -189483161695027200, -2747505844577894400, 300609462994993152000, 4408938790593232896000
Offset: 0

Views

Author

Roger L. Bagula, Oct 02 2010

Keywords

Comments

What are the constraints on left-right symmetric triangles t(n,m) such that t(2*n,n)/(n+1) are integers?

Crossrefs

Programs

  • Mathematica
    (* First program *)
    p[x_, n_] = HermiteH[n, x] + ExpandAll[x^n*HermiteH[n, 1/x]];
    b:= Table[CoefficientList[p[x, n], x], {n, 0, 50}];
    Table[b[[2*n+2, n+1]]/(n+2), {n,0,20}]
    (* Second program *)
    A060821[n_, k_]:= If[EvenQ[n-k], (-1)^(Floor[(n-k)/2])*2^k*n!/(k!*(Floor[(n - k)/2]!)), 0];
    a[n_]:= (A060821[2*n+1, n] + A060821[2*n+1, n+1])/(n+2);
    Table[a[n], {n, 0, 25}] (* G. C. Greubel, Apr 04 2021 *)
  • Sage
    def A060821(n,k): return (-1)^((n-k)//2)*2^k*factorial(n)/(factorial(k)*factorial( (n-k)//2)) if (n-k)%2==0 else 0
    def a(n): return (A060821(2*n+1, n) + A060821(2*n+1, n+1))/(n+2)
    [a(n) for n in (0..25)] # G. C. Greubel, Apr 04 2021

Formula

a(n) = (A060821(2*n+1, n) + A060821(2*n+1, n+1))/(n+2). - G. C. Greubel, Apr 04 2021

A185296 Triangle of connection constants between the falling factorials (x)(n) and (2*x)(n).

Original entry on oeis.org

1, 0, 2, 0, 2, 4, 0, 0, 12, 8, 0, 0, 12, 48, 16, 0, 0, 0, 120, 160, 32, 0, 0, 0, 120, 720, 480, 64, 0, 0, 0, 0, 1680, 3360, 1344, 128, 0, 0, 0, 0, 1680, 13440, 13440, 3584, 256, 0, 0, 0, 0, 0, 30240, 80640, 48384, 9216, 512
Offset: 0

Views

Author

Peter Bala, Feb 20 2011

Keywords

Comments

The falling factorial polynomials (x)_n := x*(x-1)*...*(x-n+1), n = 0,1,2,..., form a basis for the space of polynomials. Hence the polynomial (2*x)_n may be expressed as a linear combination of x_0, x_1,...,x_n; the coefficients in the expansion form the n-th row of the table. Some examples are given below.
This triangle is connected to two families of orthogonal polynomials, the Hermite polynomials H(n,x) A060821, and the Bessel polynomials y(n,x)A001498. The first few Hermite polynomials are
... H(0,x) = 1
... H(1,x) = 2*x
... H(2,x) = -2+4*x^2
... H(3,x) = -12*x+8*x^3
... H(4,x) = 12-48*x^2+16*x^4.
The unsigned coefficients of H(n,x) give the nonzero entries of the n-th row of the triangle.
The Bessel polynomials y(n,x) begin
... y(0,x) = 1
... y(1,x) = 1+x
... y(2,x) = 1+3*x+3*x^2
... y(3,x) = 1+6*x+15*x^2+15*x^3.
The entries in the n-th column of this triangle are the coefficients of the scaled Bessel polynomials 2^n*y(n,x).
Also the Bell transform of g(n) = 2 if n<2 else 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016

Examples

			Triangle begins
n\k|...0.....1.....2.....3.....4.....5.....6
============================================
0..|...1
1..|...0.....2
2..|...0.....2.....4
3..|...0.....0....12.....8
4..|...0.....0....12....48....16
5..|...0.....0.....0...120...160....32
6..|...0.....0.....0...120...720...480....64
..
Row 3:
(2*x)_3 = (2*x)*(2*x-1)*(2*x-2) = 8*x*(x-1)*(x-2) + 12*x*(x-1).
Row 4:
(2*x)_4 = (2*x)*(2*x-1)*(2*x-2)*(2*x-3) = 16*x*(x-1)*(x-2)*(x-3) +
48*x*(x-1)*(x-2)+ 12*x*(x-1).
Examples of recurrence relation
T(4,4) = 5*T(3,4) + 2*T(3,3) = 5*0 + 2*8 = 16;
T(5,4) = 4*T(4,4) + 2*T(4,3) = 4*16 + 2*48 = 160;
T(6,4) = 3*T(5,4) + 2*T(5,3) = 3*160 + 2*120 = 720;
T(7,4) = 2*T(6,4) + 2*T(6,3) = 2*720 + 2*120 = 1680.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, page 158, exercise 7.

Crossrefs

Cf. A000898 (row sums), A001498, A001515, A059343, A060821.

Programs

  • Maple
    T := (n,k) -> (n!/k!)*binomial(k,n-k)*2^(2*k-n):
    seq(seq(T(n, k), k=0..n), n=0..9);
  • Sage
    # uses[bell_matrix from A264428]
    bell_matrix(lambda n: 2 if n<2 else 0, 12) # Peter Luschny, Jan 19 2016

Formula

Defining relation: 2*x*(2*x-1)*...*(2*x-n+1) = sum {k=0..n} T(n, k)*x*(x-1)*...*(x-k+1)
Explicit formula: T(n,k) = (n!/k!)*binomial(k,n-k)*2^(2*k-n). [As defined by Comtet (see reference).]
Recurrence relation: T(n,k) = (2*k-n+1)*T(n-1,k)+2*T(n-1,k-1).
E.g.f.: exp(x*(t^2+2*t)) = 1 + (2*x)*t + (2*x+4*x^2)*t^2/2! + (12*x^2+8*x^3)*t^3/3! + ...
O.g.f. for m-th diagonal (starting at main diagonal m = 0): (2*m)!/m!*x^m/(1-2*x)^(2*m+1).
The triangle is the matrix product [2^k*s(n,k)]n,k>=0 * ([s(n,k)]n,k>=0)^(-1),
where s(n,k) denotes the signed Stirling number of the first kind.
Row sums are [1,2,6,20,76,...] = A000898.
Column sums are [1,4,28,296,...] = [2^n*A001515(n)] n>=0.

A085638 Resultant of the polynomial x^n-1 and the Hermite polynomial H_n(x).

Original entry on oeis.org

2, 4, -1216, 2310400, -13094125568, 41787366322733056, 609452979875950622670848, 150142808011575068721319772160000, -7129771654003819760990676428837143372103680, 114629197516562460020595757143135575237521247385419776
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 15 2003

Keywords

Crossrefs

Cf. A060821 (Hermite polynomial), A086840.

Programs

  • PARI
    Hnmin2 = 1; Hnmin1 = 2*x; print1(polresultant(x - 1, Hnmin1), ", "); for (n = 2, 12, H = 2*x*Hnmin1 - 2*(n - 1)*Hnmin2; print1(polresultant(x^n - 1, H), ", "); Hnmin2 = Hnmin1; Hnmin1 = H); \\ David Wasserman, Feb 08 2005
    
  • PARI
    a(n) = polresultant(x^n-1, polhermite(n)); \\ Michel Marcus, Apr 13 2020

Extensions

More terms from David Wasserman, Feb 08 2005

A112227 A scaled Hermite triangle.

Original entry on oeis.org

1, 0, 1, -2, 0, 1, 0, -6, 0, 1, 12, 0, -12, 0, 1, 0, 60, 0, -20, 0, 1, -120, 0, 180, 0, -30, 0, 1, 0, -840, 0, 420, 0, -42, 0, 1, 1680, 0, -3360, 0, 840, 0, -56, 0, 1, 0, 15120, 0, -10080, 0, 1512, 0, -72, 0, 1, -30240, 0, 75600, 0, -25200, 0, 2520, 0, -90, 0, 1, 0, -332640, 0, 277200, 0, -55440, 0, 3960, 0, -110, 0, 1, 665280, 0
Offset: 0

Views

Author

Paul Barry, Aug 28 2005

Keywords

Comments

Inverse of number triangle A067147. Diagonal sums are A002119.

Examples

			Triangle begins
1;
0,1;
-2,0,1;
0,-6,0,1;
12,0,-12,0,1;
0,60,0,-20,0,1;
		

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    rows = 12;
    R = RiordanArray[E^(-#^2)&, #&, rows, True];
    R // Flatten

Formula

Number triangle T(n, k)=A060821(n, k)/2^k; T(n, k)=n!/(k!*2^((n-k)/2)((n-k)/2)!)*cos(pi*(n-k)/2)*2^((n+k)/2)(1+(-1)^(n+k))/2^(k+1) T(n, k)=A001498((n+k)/2, (n-k)/2)*cos(pi(n-k)/2)*2^((n+k)/2)(1+(-1)^(n+k))/2^(k+1);
Exponential Riordan array (e^(-x^2),x). - Paul Barry, Sep 12 2006
Previous Showing 21-30 of 30 results.