A327924
Square array read by ascending antidiagonals: T(m,n) is the number of non-isomorphic groups G such that G is the semidirect product of C_m and C_n, where C_m is a normal subgroup of G and C_n is a subgroup of G.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 4, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 4, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 4, 1, 3, 1, 2, 1, 1, 1, 4, 1, 3, 1, 4, 1, 2, 1, 2, 1, 1, 1
Offset: 1
m/n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
5 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3
6 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
7 1 2 2 2 1 4 1 2 2 2 1 4 1 2 2 2 1 4 1 2
8 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4
9 1 2 2 2 1 4 1 2 2 2 1 4 1 2 2 2 1 4 1 2
10 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3
11 1 2 1 2 2 2 1 2 1 4 1 2 1 2 2 2 1 2 1 4
12 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4
13 1 2 2 3 1 4 1 3 2 2 1 6 1 2 2 3 1 4 1 3
14 1 2 2 2 1 4 1 2 2 2 1 4 1 2 2 2 1 4 1 2
15 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6
16 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6
17 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3
18 1 2 2 2 1 4 1 2 2 2 1 4 1 2 2 2 1 4 1 2
19 1 2 2 2 1 4 1 2 3 2 1 4 1 2 2 2 1 6 1 2
20 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6
Example shows that T(16,4) = 6: The semidirect product of C_16 and C_4 has group representation G = <x, y|x^16 = y^4 = 1, yxy^(-1) = x^r>, where r = 1, 3, 5, 7, 9, 11, 13, 15. Since 3^3 == 11 (mod 16), 5^3 == 13 (mod 16), <x, y|x^16 = y^4 = 1, yxy^(-1) = x^3> and <x, y|x^16 = y^4 = 1, yxy^(-1) = x^11> are isomorphic, <x, y|x^16 = y^4 = 1, yxy^(-1) = x^5> and <x, y|x^16 = y^4 = 1, yxy^(-1) = x^13> are isomorphic, giving a total of 6 non-isomorphic groups.
-
numord(n,q) = my(v=divisors(q),r=znstar(n)[2]); sum(i=1,#v,prod(j=1,#r,gcd(v[i],r[j]))*moebius(q/v[i]))
T(m,n) = my(u=divisors(n)); sum(i=1,#u,numord(m,u[i])/eulerphi(u[i]))
A386236
Ratio of the period and the reduced period of the Fibonacci 3-step sequence A000073 mod n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 3, 3, 1, 3, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 3, 3, 1, 3, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 3, 1, 1, 3, 1, 3, 1, 3, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 3, 3, 1, 1, 3, 3, 3, 3, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 3, 3, 3
Offset: 1
The equivalent sequence for Fibonacci numbers is
A001176.
Cf.
A060839 (differs first at n=31),
A154754 (restriction to prime indices).
A115069
a(n) = 3^b(n), where b(n) is #{primes p=1 mod 3 dividing n}.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 3, 1, 1, 3, 1, 1, 1, 3, 1, 3, 3, 3, 1, 1, 3, 3, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 3, 3, 3, 1, 3, 1, 3, 1, 1, 3, 1, 1, 3, 3, 1, 3, 3, 3, 3, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 9, 1, 3, 1, 3, 1, 3, 3, 1
Offset: 1
-
a:= n-> 3^add(`if`(irem(i[1], 3)=1, 1, 0), i=ifactors(n)[2](n)):
seq(a(n), n=1..100); # Alois P. Heinz, Feb 17 2019
-
b[n_] := Count[FactorInteger[n][[All, 1]], p_ /; Mod[p, 3] == 1];
a[1] = 1; a[n_] := 3^b[n];
Table[a[n], {n, 1, 99}] (* Jean-François Alcover, Feb 17 2019 *)
-
a(n) = 3^#select(x -> x%3 == 1, factor(n)[,1]); \\ Amiram Eldar, Nov 30 2024
A224516
Number of solutions to x^4 - x == 0 (mod n).
Original entry on oeis.org
1, 2, 2, 2, 2, 4, 4, 2, 4, 4, 2, 4, 4, 8, 4, 2, 2, 8, 4, 4, 8, 4, 2, 4, 2, 8, 4, 8, 2, 8, 4, 2, 4, 4, 8, 8, 4, 8, 8, 4, 2, 16, 4, 4, 8, 4, 2, 4, 4, 4, 4, 8, 2, 8, 4, 8, 8, 4, 2, 8, 4, 8, 16, 2, 8, 8, 4, 4, 4, 16, 2, 8, 4, 8, 4, 8, 8, 16, 4, 4, 4, 4, 2, 16, 4
Offset: 1
The solutions for n = 7 are 0, 1, 2, and 4.
-
f[3, e_] := If[e == 1, 2, 4]; f[p_, e_] := If[Mod[p, 3] == 2, 2, 4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2020 *)
-
def A224516(n) :
res = 1
for p, m in factor(n) :
if (p % 3 == 2) or (p == 3 and m == 1) : res *= 2
else : res *= 4
return res
A276919
Number of solutions to x^3 + y^3 + z^3 + t^3 == 1 (mod n) for 1 <= x, y, z, t <= n.
Original entry on oeis.org
1, 8, 27, 64, 125, 216, 336, 512, 1296, 1000, 1331, 1728, 1794, 2688, 3375, 4096, 4913, 10368, 7410, 8000, 9072, 10648, 12167, 13824, 15625, 14352, 34992, 21504, 24389, 27000, 30225, 32768, 35937, 39304, 42000, 82944, 48396, 59280, 48438, 64000, 68921, 72576, 77529, 85184, 162000, 97336
Offset: 1
-
JJJ[4, n, lam] = Sum[If[Mod[a^3 + b^3 + c^3 + d^3, n] == Mod[lam, n], 1, 0], {d, 0, n - 1}, {a, 0, n - 1}, {b, 0, n - 1}, {c, 0 , n - 1}]; Table[JJJ[4, n, 1], {n, 1, 50}]
-
a(n) = sum(x=1, n, sum(y=1, n, sum(z=1, n, sum(t=1, n, Mod(x,n)^3 + Mod(y,n)^3 + Mod(z,n)^3 + Mod(t,n)^3 == 1)))); \\ Michel Marcus, Oct 11 2016
-
qperms(v) = {my(r=1,t); v = vecsort(v); for(i=1,#v-1, if(v[i]==v[i+1], t++, r*=binomial(i,t+1);t=0));r*=binomial(#v,t+1)}
a(n) = {my(t=0); forvec(v=vector(4,i,[1,n]), if(sum(i=1, 4, Mod(v[i], n)^3)==1, print1(v", "); t+=qperms(v)),1);t} \\ David A. Corneth, Oct 11 2016
-
def A276919(n):
ndict = {}
for i in range(n):
i3 = pow(i,3,n)
for j in range(i+1):
j3 = pow(j,3,n)
m = (i3+j3) % n
if m in ndict:
if i == j:
ndict[m] += 1
else:
ndict[m] += 2
else:
if i == j:
ndict[m] = 1
else:
ndict[m] = 2
count = 0
for i in ndict:
j = (1-i) % n
if j in ndict:
count += ndict[i]*ndict[j]
return count # Chai Wah Wu, Jun 06 2017
A276920
Number of solutions to x^3 + y^3 + z^3 + t^3 == 0 (mod n) for 1 <= x, y, z, t <= n.
Original entry on oeis.org
1, 8, 27, 72, 125, 216, 595, 704, 1539, 1000, 1331, 1944, 3133, 4760, 3375, 5632, 4913, 12312, 8911, 9000, 16065, 10648, 12167, 19008, 16125, 25064, 45927, 42840, 24389, 27000, 35371, 47104, 35937, 39304, 74375, 110808, 58645, 71288, 84591, 88000
Offset: 1
For n = 3, we see that all nondecreasing solutions {x, y, z, t} are in {{1, 1, 1, 3}, {1, 1, 2, 2}, {1, 2, 3, 3}, {2, 2, 2, 3}, {3, 3, 3, 3}}. The numbers in the sets can be ordered in 4, 6, 12, 4 and 1 ways respectively. Therefore, a(3) = 4 + 6 + 12 + 4 + 1 = 27. - _David A. Corneth_, Oct 11 2016
-
CF:= table([[false, false, true] = 12, [true, false, false] = 12, [true, false, true] = 6, [false, false, false] = 24, [true, true, true] = 1, [false, true, true] = 4, [false, true, false] = 12, [true, true, false] = 4]):
f1:= proc(n)
option remember;
local count, t, x,y,z,signature;
if isprime(n) and n mod 3 = 2 then return n^3 fi;
count:= 0;
for t from 1 to n do
for x from 1 to t do
for y from 1 to x do
for z from 1 to y do
if t^3 + x^3 + y^3 + z^3 mod n = 0 then
signature:= map(evalb,[z=y,y=x,x=t]);
count:= count + CF[signature];
fi
od od od od;
count
end proc:
f:= proc(n) local t;
mul(f1(t[1]^t[2]),t=ifactors(n)[2])
end proc:
map(f, [$1..40]); # Robert Israel, Oct 13 2016
-
JJJ[4, n, lam] = Sum[If[Mod[a^3 + b^3 + c^3 + d^3, n] == Mod[lam, n], 1, 0], {d, 0, n - 1}, {a, 0, n - 1}, {b, 0, n - 1}, {c, 0 , n - 1}]; Table[JJJ[4, n, 0], {n, 1, 50}]
-
a(n) = sum(x=1, n, sum(y=1, n, sum(z=1, n, sum(t=1, n, Mod(x,n)^3 + Mod(y,n)^3 + Mod(z,n)^3 + Mod(t,n)^3 == 0)))); \\ Michel Marcus, Oct 11 2016
-
qperms(v) = {my(r=1,t); v = vecsort(v); for(i=1,#v-1, if(v[i]==v[i+1], t++, r*=binomial(i, t+1);t=0));r*=binomial(#v,t+1)}
a(n) = {my(t=0); forvec(v=vector(4,i,[1,n]), if(sum(i=1,4,Mod(v[i],n)^3)==0, t+=qperms(v)),1);t} \\ David A. Corneth, Oct 11 2016
-
def A276920(n):
ndict = {}
for i in range(n):
i3 = pow(i,3,n)
for j in range(i+1):
j3 = pow(j,3,n)
m = (i3+j3) % n
if m in ndict:
if i == j:
ndict[m] += 1
else:
ndict[m] += 2
else:
if i == j:
ndict[m] = 1
else:
ndict[m] = 2
count = 0
for i in ndict:
j = (-i) % n
if j in ndict:
count += ndict[i]*ndict[j]
return count # Chai Wah Wu, Jun 06 2017
A327925
Irregular table read by rows: T(m,n) is the number of non-isomorphic groups G such that G is the semidirect product of C_m and C_n, where C_m is a normal subgroup of G and C_n is a subgroup of G, 1 <= n <= A002322(m).
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 1, 4, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 1, 2, 1, 4, 1, 4, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1, 6, 1, 2, 2, 2, 1, 4, 1, 4, 1, 6, 1, 4, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 3, 2, 1, 4, 1, 2, 2, 2, 1, 6
Offset: 1
Table starts
m = 1: 1;
m = 2: 1;
m = 3: 1, 2;
m = 4: 1, 2;
m = 5: 1, 2, 1, 3;
m = 6: 1, 2;
m = 7: 1, 2, 2, 2, 1, 4;
m = 8: 1, 4;
m = 9: 1, 2, 2, 2, 1, 4;
m = 10: 1, 2, 1, 3;
m = 11: 1, 2, 1, 2, 2, 2, 1, 2, 1, 4;
m = 12: 1, 4;
m = 13: 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1, 6;
m = 14: 1, 2, 2, 2, 1, 4;
m = 15: 1, 4, 1, 6;
m = 16: 1, 4, 1, 6;
m = 17: 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5;
m = 18: 1, 2, 2, 2, 1, 4;
m = 19: 1, 2, 2, 2, 1, 4, 1, 2, 3, 2, 1, 4, 1, 2, 2, 2, 1, 6;
m = 20: 1, 4, 1, 6;
Example shows that T(21,6) = 6: The semidirect product of C_21 and C_6 has group representation G = <x, y|x^21 = y^6 = 1, yxy^(-1) = x^r>, where r = 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20. Since 2^5 == 11 (mod 21), 4^5 == 16 (mod 21), 5^5 == 17 (mod 21), 10^5 == 19 (mod 21), there are actually four pairs of isomorphic groups, giving a total of 8 non-isomorphic groups.
-
numord(n,q) = my(v=divisors(q),r=znstar(n)[2]); sum(i=1,#v,prod(j=1,#r,gcd(v[i],r[j]))*moebius(q/v[i]))
T(m,n) = my(u=divisors(n)); sum(i=1,#u,numord(m,u[i])/eulerphi(u[i]))
Row(m) = my(l=if(m>2,znstar(m)[2][1],1), R=vector(l,n,T(m,n))); R
A115070
a(n) = phi(n)/3^b(n), where b(n) is #{primes p=1 mod 3 dividing n}.
Original entry on oeis.org
1, 1, 2, 2, 4, 2, 2, 4, 6, 4, 10, 4, 4, 2, 8, 8, 16, 6, 6, 8, 4, 10, 22, 8, 20, 4, 18, 4, 28, 8, 10, 16, 20, 16, 8, 12, 12, 6, 8, 16, 40, 4, 14, 20, 24, 22, 46, 16, 14, 20, 32, 8, 52, 18, 40, 8, 12, 28, 58, 16, 20, 10, 12, 32, 16, 20, 22, 32, 44, 8, 70, 24, 24, 12, 40, 12, 20, 8, 26, 32, 54
Offset: 1
-
with(numtheory):
a:= n-> phi(n)/3^add(`if`(irem(p, 3)=1, 1, 0), p=factorset(n)):
seq(a(n), n=1..100); # Alois P. Heinz, Feb 17 2019
-
b[n_] := Count[FactorInteger[n][[All, 1]], p_ /; Mod[p, 3] == 1]; b[1] = 0;
a[n_] := EulerPhi[n]/3^b[n];
Table[a[n], {n, 1, 81}] (* Jean-François Alcover, Feb 17 2019 *)
f[p_, e_] := (p - 1)*p^(e - 1)/If[Mod[p, 3] == 1, 3, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 30 2024 *)
-
{b(n)=my(f=factor(n)[, 1]); sum(i=1, #f, f[i]%3==1)};
{a(n)= eulerphi(n)/3^b(n)};
vector(80, n, a(n)) \\ G. C. Greubel, Feb 17 2019
-
a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]-1)*f[i,1]^(f[i,2]-1)/if(f[i,1] % 3 == 1, 3,1));} \\ Amiram Eldar, Nov 30 2024
Comments