cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A076792 Sum_{d divides n} d^2*(-1)^bigomega(d), where bigomega(n) = A001222(n).

Original entry on oeis.org

1, -3, -8, 13, -24, 24, -48, -51, 73, 72, -120, -104, -168, 144, 192, 205, -288, -219, -360, -312, 384, 360, -528, 408, 601, 504, -656, -624, -840, -576, -960, -819, 960, 864, 1152, 949, -1368, 1080, 1344, 1224, -1680, -1152, -1848, -1560, -1752, 1584, -2208, -1640, 2353, -1803
Offset: 1

Views

Author

Vladeta Jovovic, Nov 16 2002

Keywords

Comments

The sign of a(n) is (-1)^(bigomega(n)) = (-1)^(A001222(n)). - David A. Corneth, Jun 27 2018

Examples

			As 12 = 2^2 * 3, a(12) = a(2^2) * a(3) = (1+(-1)^2*2^(2*2+2))/(1+2^2) * (1+(-1)^1*3^(2*1+2))/(1+3^2) = 13 * -8 = -104. - _David A. Corneth_, Jun 27 2018
		

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, #^2*(-1)^PrimeOmega[#] &] &, 50] (* Michael De Vlieger, Jun 27 2018 *)
    f[p_, e_] := (1 + (-1)^e*p^(2*e+2))/(1 + p^2); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d^2 * (-1)^bigomega(d)); \\ Daniel Suteu, Jun 27 2018
    
  • PARI
    a(n) = my(f=factor(n)); prod(k=1, #f~, ((-1)^f[k,2] * f[k,1]^(2 * f[k,2] + 2) + 1) / (1 + f[k,1]^2)); \\ Daniel Suteu, Jun 27 2018

Formula

Multiplicative with a(p^e) = (1+(-1)^e*p^(2*e+2))/(1+p^2).
Dirichlet g.f.: zeta(s)*zeta(2*s-4)/zeta(s-2).
More generally, if b(n, k) = Sum_{d divides n} d^k*(-1)^bigomega(d) then b(n, k) is multiplicative and b(p^e, k) = (1+(-1)^e*p^(k*(e+1)))/(1+p^k).
Dirichlet g.f. for b(n, k): zeta(s)*zeta(2*s-2*k)/zeta(s-k).
b(n, 0) = A010052(n), b(n, 1) = A061020(n).
a(n) = A008836(n)*n^2* Sum(d|n, A008836(d)/d^2). - Enrique Pérez Herrero, Jul 10 2012
a(n) = (-1)^bigomega(n) * Sum_{d|n, d is a perfect square} A007434(n/d). - Daniel Suteu, Jun 27 2018
Sum_{k=1..n} |a(k)| ~ n^3 * zeta(6)/(3*zeta(3)). - Daniel Suteu, Apr 06 2019
Dirichlet g.f. for |a(n)|: zeta(s-2)*zeta(2*s)/zeta(s). - Vaclav Kotesovec, Apr 06 2019

A118209 Expansion of Sum_{k>=1} lambda(k) * k * x^k/(1 + x^k) where lambda(k) is the Liouville function, A008836.

Original entry on oeis.org

1, -3, -2, 5, -4, 6, -6, -11, 7, 12, -10, -10, -12, 18, 8, 21, -16, -21, -18, -20, 12, 30, -22, 22, 21, 36, -20, -30, -28, -24, -30, -43, 20, 48, 24, 35, -36, 54, 24, 44, -40, -36, -42, -50, -28, 66, -46, -42, 43, -63, 32, -60, -52, 60, 40, 66, 36, 84, -58, 40, -60, 90, -42, 85, 48, -60, -66, -80, 44, -72, -70, -77, -72, 108, -42
Offset: 1

Views

Author

Stuart Clary, Apr 15 2006

Keywords

Comments

Related to the logarithmic derivative of A118207(x) and A118208(x).
Related to a signed variant of A022998 via Mobius inversion. - R. J. Mathar, Jul 03 2011

Crossrefs

Programs

  • Mathematica
    nmax = 80; lambda[k_Integer?Positive] := If[ k > 1, (-1)^Total[ Part[Transpose[FactorInteger[k]], 2] ], 1 ]; Drop[ CoefficientList[ Series[ Sum[ lambda[k] k x^k/(1 + x^k), {k, 1, nmax} ], {x, 0, nmax} ], x ], 1 ]
    f[p_, e_] := (p*(-p)^e+1)/(p+1); f[2, e_] := ((-1)^e*2^(e+2) - 1)/3; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Aug 12 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d - 1)*(-1)^vecsum(factor(d)[,2])*d) \\ Michel Marcus, Dec 10 2016

Formula

a(n) = Sum_{d|n} (-1)^(n/d - 1)*lambda(d)*d, Dirichlet convolution of A061019 and A062157.
G.f.: A(x) is x times the logarithmic derivative of A118207(x).
G.f.: A(x) = A061020(x) - 2 A061020(x^2).
Dirichlet g.f.: zeta(s)*zeta(2s-2)*(1-2^(1-s))/zeta(s-1). - R. J. Mathar, Jul 03 2011
a(n) > 0 for n in A028260. - Michel Marcus, Dec 10 2016
Multiplicative with a(2^e) = ((-1)^e*2^(e+2) - 1)/3, and a(p^e) = (p*(-p)^e+1)/(p+1) for an odd prime p. - Amiram Eldar, Aug 12 2023

A328181 a(n) = (-1)^(bigomega(n) - omega(n)) * Sum_{d|n} (-1)^(bigomega(d) - omega(d)) * d.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 7, 5, 18, 12, 4, 14, 24, 24, 9, 18, 15, 20, 6, 32, 36, 24, 28, 19, 42, 22, 8, 30, 72, 32, 23, 48, 54, 48, 5, 38, 60, 56, 42, 42, 96, 44, 12, 30, 72, 48, 36, 41, 57, 72, 14, 54, 66, 72, 56, 80, 90, 60, 24, 62, 96, 40, 41, 84, 144, 68, 18, 96, 144
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 06 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (-1)^(PrimeOmega[n] - PrimeNu[n]) Sum[(-1)^(PrimeOmega[d] - PrimeNu[d]) d, {d, Divisors[n]}]; Table[a[n], {n, 1, 70}]
    f[p_, e_] := (p^(e+1) - (-1)^e *(2*p+1))/(p+1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 02 2020 *)
  • PARI
    a(n) = (-1)^(bigomega(n)-omega(n))*sumdiv(n, d, (-1)^(bigomega(d)-omega(d))*d); \\ Michel Marcus, Oct 06 2019

Formula

a(p) = p + 1, where p is prime.
Multiplicative with a(p^e) = (p^(e+1) - (-1)^e*(2*p+1))/(p+1). - Amiram Eldar, Dec 02 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/30) * Product_{p prime} (1 + 2/p^2 - 2/p^3) = 0.5507877576... . - Amiram Eldar, Nov 06 2022

A200758 Superimperfect numbers.

Original entry on oeis.org

2, 4, 8, 128, 32768, 2147483648
Offset: 1

Views

Author

Laszlo Toth, Nov 22 2011

Keywords

Comments

A number n is said to be superimperfect if 2*beta(beta(n)) = n, where beta is the multiplicative function defined by beta(p^e) = p^e - p^(e-1) + p^(e-2) - ... + (-1)^e for every prime power p^e. The function beta is called the alternating sum-of-divisors function. Here beta(n) is the absolute value of A061020(n). There are no other superimperfect numbers up to 10^7. The number 2^(2^k-1) is superimperfect if and only if k=1,2,3,4,5.

Crossrefs

Programs

  • PARI
    beta(n)=sumdiv(n,d,(-1)^bigomega(n/d)*d)
    for(n=1,1e8,if(2*beta(beta(n))==n,print1(n", "))) \\ Charles R Greathouse IV, Nov 22 2011
    
  • PARI
    ak(p,e)=my(s=1); for(i=1,e, s=s*p + (-1)^i); s
    beta(n)=my(f=factor(n)); prod(i=1,#f~, ak(f[i,1],f[i,2]))
    is(n)=my(b=beta(n)); 2*b-2 >= n && 2*beta(b)==n \\ Charles R Greathouse IV, Dec 27 2016

A307837 a(1) = 1; a(n+1) = Sum_{d|n} lambda(d)*a(d), where lambda = Liouville function (A008836).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, -1, -1, -1, 2, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 2, 1, 0, 1, 0, 2, -1, -2, 3, -3, -2, 1, 1, -1, 2, 3, 3, 2, 3, 3, -2, -3, 4, 4, -3, -3, -3, 4, -3, 4, 4, -3, 4, -5, 6, 6, -6, 8, 9, -9, 10, -8, -6, -7, 8, 7, 6, 5, 6, 7, -6, -8, -7, 6, 7, 9, 9, 5, -4, 2, -1
Offset: 1

Views

Author

Ilya Gutkovskiy, May 01 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Sum[LiouvilleLambda[d] a[d], {d, Divisors[n - 1]}]; a[1] = 1; Table[a[n], {n, 1, 100}]
    a[n_] := a[n] = SeriesCoefficient[x (1 + Sum[LiouvilleLambda[k] a[k] x^k/(1 - x^k), {k, 1, n - 1}]), {x, 0, n}]; Table[a[n], {n, 1, 100}]

Formula

G.f.: x * (1 + Sum_{n>=1} lambda(n)*a(n)*x^n/(1 - x^n)).
Previous Showing 11-15 of 15 results.