cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A259313 Numbers m for which there exists a k>=2 such that m equals the average of digitsum(m^p) for p from 1 to k.

Original entry on oeis.org

1, 9, 12, 13, 16, 19, 21, 49, 61, 67, 84, 106, 160, 191, 207, 250, 268, 373, 436, 783, 2321, 3133, 3786, 3805, 4842, 5128, 8167, 13599, 29431, 35308
Offset: 1

Views

Author

Pieter Post, Jun 24 2015

Keywords

Comments

Digitsum = (A007953).
The 'k's are 2, 2, 4, 3, 4, 5, 7, 12, 15, 16, 19, 21, 57, 37, 38, 79, 48, 63, 72, 119, 306, 397, 469, 472, 582, 613, 927, 1461, 2926, 3449, ..., . - Robert G. Wilson v, Jul 30 2015

Examples

			Digitsum(9) is 9, digitsum(9^2) is 9. (9+9)/2 = 9. So 9 is in this sequence.
12^1 = 12, 12^2 = 144, 12^3 = 1728 and 12^4 = 20736. Digitsum(12) = 3, digitsum(144) = 9, digitsum(1728) = 18, digitsum(20736) = 18, (3+9+18+18)/4 = 12. So 12 is in this sequence.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := If[ IntegerQ@ Log10@ n, False, Block[{pwr = 2, s = Plus @@ IntegerDigits@ n}, While[s = s + Plus @@ IntegerDigits[n^pwr]; s < n*pwr, pwr++]; If[s == n*pwr, True, False]]]; k = 1; lst = {1}; While[k < 100001, If[fQ@ k, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Jul 30 2015 *)
  • Python
    def sod(n):
        kk = 0
        while n > 0:
            kk= kk+(n%10)
            n =int(n//10)
        return kk
    for c in range (2, 10**3):
        bb=0
        for a in range(1,200):
            bb=bb+sod(c**a)
            if bb==c*a:
                print (c,a)

Extensions

a(21)-a(28) from Giovanni Resta, Jun 24 2015
a(1)-a(28) checked by Robert G. Wilson v, Jul 30 2015
a(29)-a(30) from Robert G. Wilson v, Jul 30 2015

A368939 Numbers k such that the sum of the digits times the sum of the fourth powers of the digits equals k.

Original entry on oeis.org

0, 1, 182380, 444992
Offset: 1

Views

Author

René-Louis Clerc, Jan 10 2024

Keywords

Comments

There are exactly 4 such numbers (Property 16 of Clerc).

Examples

			182380 = (1+8+2+3+8)*(1^4 + 8^4 + 2^4 + 3^4 + 8^4) = 22*8290.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0,10^7],#==Total[IntegerDigits[#]]*Total[IntegerDigits[#]^4]&] (* James C. McMahon, Jan 11 2024 *)
  • PARI
    niven14(k) = my(d=digits(k)); vecsum(d)*sum(i=1, #d, d[i]^4) == k;
    for(k=1,10^7,if(niven14(k)==1,print1(k,", ")))

A375343 Numbers which are the sixth powers of their digit sum.

Original entry on oeis.org

0, 1, 34012224, 8303765625, 24794911296, 68719476736
Offset: 1

Views

Author

René-Louis Clerc, Aug 12 2024

Keywords

Comments

Solutions can have no more than 13 digits, since (13*9)^6 < 10^13.

Examples

			68719476736 = (6+8+7+1+9+4+7+6+7+3+6)^6 = 64^6.
		

Crossrefs

Programs

  • PARI
    for (k=0, sqrtnint(10^13,6), if (k^6 == sumdigits(k^6)^6, print1(k^6, ", ")); )

Formula

{ k : k = A007953(k)^6}.
a(n) = A055577(n)^6. - Alois P. Heinz, Aug 24 2024

A379767 Triangle read by rows: row n lists numbers which are the n-th powers of their digit sum.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 81, 0, 1, 512, 4913, 5832, 17576, 19683, 0, 1, 2401, 234256, 390625, 614656, 1679616, 0, 1, 17210368, 52521875, 60466176, 205962976, 0, 1, 34012224, 8303765625, 24794911296, 68719476736, 0, 1, 612220032, 10460353203, 27512614111, 52523350144, 271818611107, 1174711139837, 2207984167552, 6722988818432
Offset: 1

Views

Author

René-Louis Clerc, Jan 02 2025

Keywords

Comments

Each row begins with 0, 1. Solutions can have no more than R(n) digits, since (R(n)*9)^n < 10^R(n), hence, for each n, there are a finite number of solutions (Property 1 and table 1 of Clerc).

Examples

			Triangle begins:
  1 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;
  2 | 0, 1, 81;
  3 | 0, 1, 512, 4913, 5832, 17576, 19683;
  4 | 0, 1, 2401, 234256, 390625, 614656, 1679616;
  5 | 0, 1, 17210368, 52521875, 60466176, 205962976;
  6 | 0, 1, 34012224, 8303765625, 24794911296, 68719476736;
  7 | 0, 1, 612220032, 10460353203, 27512614111, 52523350144, 271818611107, 1174711139837, 2207984167552, 6722988818432;
  8 | 0, 1, 20047612231936, 72301961339136, 248155780267521;
  9 | 0, 1, 3904305912313344, 45848500718449031, 150094635296999121;
  ...
		

Crossrefs

Rows 3..6 are A061209, A061210, A254000, A375343.
Row lengths are 1 + A046019(n).
Cf. A001014, A007953, A061211 (largest terms), A133509.
Cf. A152147.

Programs

  • PARI
    R(n) = for(j=2,oo, if((j*9)^n <10^j, return(j)));
    row(n) = my(L=List()); for (k=0, sqrtnint(10^R(n),n), if (k^n == sumdigits(k^n)^n, listput(L, k^n))); Vec(L)

A085754 Numbers n such that (digital sum of n)^3 = reversal of n. (Powers of 10 excluded.)

Original entry on oeis.org

215, 2150, 2385, 3194, 21500, 23850, 31940, 38691, 67571, 215000, 238500, 319400, 386910, 675710, 2150000, 2385000, 3194000, 3869100, 6757100, 21500000, 23850000, 31940000, 38691000, 67571000, 215000000, 238500000, 319400000
Offset: 1

Views

Author

Jason Earls, Jul 21 2003

Keywords

Comments

Numbers whose digit reversals are members of A061209. - David Wasserman, Feb 09 2005

Crossrefs

Cf. A061209.

Extensions

More terms from David Wasserman, Feb 09 2005

A257786 Numbers n such that the square root of the sum of the digits times the sum of the digits of n in some power equal n.

Original entry on oeis.org

0, 1, 27, 376, 13131, 234595324075, 54377519037479592374299, 8326623359858152426050700, 1513868951125582592290131113769528
Offset: 1

Views

Author

Pieter Post, May 08 2015

Keywords

Comments

It appears that this sequence is finite.

Examples

			376 = sqrt(3+7+6)*(3^2+7^2+6^2).
13131 = sqrt(1+3+1+3+1)*(1^7+3^7+1^7+3^7+1^7).
		

Crossrefs

Programs

  • Python
    def moda(n,a):
        kk = 0
        while n > 0:
            kk= kk+(n%10)**a
            n =int(n//10)
        return kk
    def sod(n):
        kk = 0
        while n > 0:
            k= kk+(n%10)
            n =int(n//10)
        return kk
    for a in range (1, 10):
        for c in range (1, 10**8):
            if c**2==sod(c)*moda(c,a)**2:
                print (a,c, sod(c),moda(c,a))

Extensions

a(6) from Giovanni Resta, May 09 2015
a(7)-a(9) from Chai Wah Wu, Nov 29 2015

A257969 Numbers m such that the sum of the digits (sod) of m, m^2, m^3, ..., m^9 are in arithmetic progression: sod(m^(k+1)) - sod(m^k) = f for k=1..8.

Original entry on oeis.org

1, 10, 100, 1000, 7972, 10000, 53941, 79720, 100000, 134242, 539410, 698614, 797200, 1000000, 1342420, 5394100, 6986140, 7525615, 7972000, 9000864, 10000000, 10057054, 13424200, 15366307, 17513566, 20602674, 23280211, 24716905, 25274655, 25665559, 32083981, 34326702, 34446204, 34534816
Offset: 1

Views

Author

Pieter Post, May 15 2015

Keywords

Comments

All powers of 10 are terms of this sequence.
If m is a term, then so is 10*m.
Number of terms < 10^k for k >= 1: 1, 2, 3, 5, 8, 13, 20, 62.

Examples

			7972 is in the sequence, because the difference between the successive sum-of-digit values is 15:
  sod(7972) = 25;
  sod(7972^2) = 40;
  sod(7972^3) = 55;
  sod(7972^4) = 70;
  sod(7972^5) = 85;
  sod(7972^6) = 100;
  sod(7972^7) = 115;
  sod(7972^8) = 130;
  sod(7972^9) = 145;
  sod(7972^10) = 178, where the increment is no longer 15.
But there are seven numbers below 10^9 with a longer sequence (namely, 134242, 23280211, 40809168, 46485637, 59716223, 66413917, and 97134912) where sod(m^(k+1)) - sod(m^k) = f for k=1..9.
  sod(134242) = 16;
  sod(134242^2) = 40;
  sod(134242^3) = 64;
  sod(134242^4) = 88;
  sod(134242^5) = 112;
  sod(134242^6) = 136;
  sod(134242^7) = 160;
  sod(134242^8) = 184;
  sod(134242^9) = 208;
  sod(134242^10) = 232;
  sod(134242^11) = 283, where the increment is no longer 24.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{g}, g[x_] := Power[x, #] & /@ Range@ 9; Length@ DeleteDuplicates@ Differences[Total[IntegerDigits@ #] & /@ g@ n] == 1]; Select[Range@ 1000000, fQ] (* Michael De Vlieger, Jun 12 2015 *)
    Select[Range[35*10^6],Length[Union[Differences[Total/@IntegerDigits[ #^Range[9]]]]] ==1&] (* Harvey P. Dale, Aug 23 2017 *)
  • PARI
    isok(n) = {my(osod = sumdigits(n^2)); my(f = osod - sumdigits(n)); for (k=3, 9, my(nsod = sumdigits(n^k)); if (nsod - osod != f, return (0)); osod = nsod;); return (1);} \\ Michel Marcus, May 28 2015

Formula

{m : sod(m^(k+1)) - sod(m^k) = f for k=1..8}.

Extensions

Corrected and extended by Harvey P. Dale, Aug 23 2017
Edited by Jon E. Schoenfield, Mar 01 2022

A370250 Numbers k such that the sum of the digits times the square of the sum of the fourth powers of the digits equals k.

Original entry on oeis.org

0, 1, 5873656512, 7253758561, 29961747275
Offset: 1

Views

Author

René-Louis Clerc, Feb 13 2024

Keywords

Comments

There are exactly 5 such numbers (Property 17 of Clerc).

Examples

			7253758561 = (7+2+5+3+7+5+8+5+6+1)*(7^4 + 2^4 + 5^4 + 3^4 + 7^4 + 5^4 + 8^4 + 5^4 + 6^4 + 1^4)^2 = 49*148035889 = 7253758561.
		

Crossrefs

Programs

  • PARI
    niven142(k) = my(d=digits(k)); vecsum(d)*sum(i=1, #d, d[i]^4)^2 == k;
    for(k=0,10^12,if(niven142(k)==1,print1(k, ", ")))

A385158 Numbers k such that the sum of the digits of k is a number that appears as a substring of k, and every nonzero digit of k appears in that sum.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 199, 200, 300, 400, 500, 600, 700, 800, 900, 919, 1000, 1188, 1818, 1881, 1909, 1990, 2000, 2999, 3000, 4000, 5000, 6000, 7000, 8000, 8118, 8181, 9000, 9019, 9190, 9299, 9929, 10000
Offset: 1

Views

Author

Rivka Maryles, Jun 19 2025

Keywords

Examples

			1818 is in the sequence because 1 + 8 + 1 + 8 = 18, and 18 appears within the number. Also, all nonzero digits (1 and 8) are found in the digit sum (18).
		

Crossrefs

Cf. A052018, A007953, A031286 (numbers containing a given substring), A070939 (numbers equal to the sum of their digits concatenated), A061209 (numbers containing their digit sum).

Programs

  • Maple
    filter:= proc(k) local L,s,S,nL,nS,i;
      L:= convert(k,base,10);
      nL:= nops(L);
      s:= convert(L,`+`);
      S:= convert(s,base,10);
      nS:= nops(S);
      (convert(L,set) minus {0} = convert(S,set) minus {0}) and member(S, [seq(L[i..i+nS-1],i=1..nL-nS+1)])
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Jul 23 2025
  • Mathematica
    isok[n_] := Module[{digits, sum, sumStr},
      digits = IntegerDigits[n];
      sum = Total[digits];
      sumStr = ToString[sum];
      StringContainsQ[ToString[n], sumStr] &&
        AllTrue[DeleteCases[digits, 0],
          DigitCount[sum, 10, #] > 0 &]
    ];
    Select[Range[9999], isok]
  • Python
    def ok(n):
        digits = str(n)
        digit_sum_str = str(sum(map(int, digits)))
        return digit_sum_str in digits and all(d in digit_sum_str for d in set(digits) - {'0'})
    print([k for k in range(1, 10001) if ok(k)])
Previous Showing 11-19 of 19 results.