cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 94 results. Next

A378038 First differences of A112925 = greatest squarefree number < prime(n).

Original entry on oeis.org

1, 1, 3, 4, 1, 4, 2, 5, 4, 4, 5, 4, 3, 4, 5, 7, 1, 7, 4, 1, 7, 4, 5, 8, 2, 5, 4, 1, 4, 12, 7, 4, 4, 8, 3, 6, 6, 5, 4, 8, 1, 11, 1, 4, 2, 13, 12, 4, 1, 4, 7, 1, 10, 6, 7, 5, 2, 5, 4, 4, 9, 14, 5, 1, 3, 16, 5, 11, 1, 2, 9, 8, 5, 6, 5, 4, 9, 4, 8, 11, 1, 11, 1, 7
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2024

Keywords

Crossrefs

First differences of A112925, restriction of A070321, differences A378085.
For prime powers we have A377781, opposite A377703.
The nonsquarefree opposite is A377784 (differences of A377783), restriction of A378039.
The nonsquarefree version is A378034, first differences of A378032.
The opposite is A378037, differences of A112926.
The unrestricted opposite is A378087, differences of A067535.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.

Programs

  • Mathematica
    Differences[Table[NestWhile[#-1&,Prime[n]-1,!SquareFreeQ[#]&],{n,100}]]

A293697 a(n) is the sum of prime numbers between 2^n+1 and 2^(n+1).

Original entry on oeis.org

2, 3, 12, 24, 119, 341, 1219, 4361, 16467, 57641, 208987, 780915, 2838550, 10676000, 39472122, 148231324, 559305605, 2106222351, 7995067942, 30299372141, 115430379568, 440354051430, 1683364991290, 6448757014608, 24754017328490, 95132828618112, 366232755206338
Offset: 0

Views

Author

Olivier Gérard, Oct 15 2017

Keywords

Examples

			From _Gus Wiseman_, Jun 02 2024: (Start)
Row-sums of:
   2
   3
   5   7
  11  13
  17  19  23  29  31
  37  41  43  47  53  59  61
  67  71  73  79  83  89  97 101 103 107 109 113 127
(End)
		

Crossrefs

Cf. A036378 (number of primes summed).
Cf. A293696 (triangle of partial sums).
Minimum is A014210 or A104080, indices A372684.
Maximum is A014234, delta A013603.
Counting all numbers (not just prime) gives A049775.
For squarefree instead of prime numbers we have A373123, length A077643.
For prime indices we have A373124.
Partial sums give A130739(n+1).

Programs

  • Mathematica
    Table[Plus @@
      Table[Prime[i], {i, PrimePi[2^(n)] + 1, PrimePi[2^(n + 1)]}], {n, 0,
       24}]

A373199 Least k such that the k-th maximal run of nonsquarefree numbers has length n. Position of first appearance of n in A053797.

Original entry on oeis.org

1, 2, 13, 68, 241, 6278, 61921, 311759, 2530539
Offset: 1

Views

Author

Gus Wiseman, Jun 08 2024

Keywords

Comments

A run of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by one. The a(n)-th run of nonsquarefree numbers begins with A045882 = A051681, subset of A053806.

Examples

			The maximal runs of nonsquarefree numbers begin:
   4
   8   9
  12
  16
  18
  20
  24  25
  27  28
  32
  36
  40
  44  45
  48  49  50
  52
  54
  56
  60
  63  64
The a(n)-th rows are:
     4
     8     9
    48    49    50
   242   243   244   245
   844   845   846   847   848
For example, (48, 49, 50) is the first maximal run of 3 nonsquarefree numbers, so a(3) = 13.
		

Crossrefs

For composite instead of nonsquarefree we have A073051.
The version for squarefree runs is A373128.
For prime instead of nonsquarefree we have A373400.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    seq=Length/@Split[Select[Range[10000],!SquareFreeQ[#]&],#1+1==#2&];
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[y,Range[#]]&];
    Table[Position[seq,i][[1,1]],{i,spna[seq]}]

A377784 First-differences of A377783 (least nonsquarefree number > prime(n)).

Original entry on oeis.org

0, 4, 0, 4, 4, 2, 2, 4, 8, 0, 8, 4, 0, 4, 6, 6, 3, 5, 4, 3, 5, 4, 6, 8, 6, 0, 4, 4, 4, 12, 4, 8, 0, 10, 2, 8, 4, 4, 7, 5, 4, 8, 4, 2, 2, 12, 12, 4, 4, 2, 6, 2, 10, 8, 4, 6, 2, 7, 5, 0, 10, 14, 4, 3, 5, 12, 6, 10, 2, 6, 4, 8, 7, 5, 4, 8, 8, 4, 8, 8, 3, 9, 4, 4
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2024

Keywords

Comments

There are no consecutive 0's.
Does this sequence contain every positive integer > 1?

Crossrefs

Positions of 0's are A068361.
The opposite for squarefree is A378038, differences of A112925.
For prime-power instead of nonsquarefree and primes + 1 we have A377703, first-differences of A345531.
First-differences of A377783, union A378040.
The opposite is A378034 (differences of A378032), restriction of A378036 (differences A378033).
For squarefree instead of nonsquarefree we have A378037, first-differences of A112926.
Restriction of A378039 (first-differences of A120327) to the primes.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398, A068360, A337030, A377430, A377431 count squarefree numbers between primes.
A061399, A068361, A378086 count nonsquarefree numbers between primes.
A070321 gives the greatest squarefree number up to n.

Programs

  • Mathematica
    Differences[Table[NestWhile[#+1&,Prime[n],SquareFreeQ[#]&],{n,100}]]

A378034 First-differences of A378032 (greatest number < prime(n) that is 1 or nonsquarefree).

Original entry on oeis.org

0, 3, 0, 5, 3, 4, 2, 2, 8, 0, 8, 4, 0, 5, 7, 4, 4, 4, 4, 4, 4, 5, 7, 8, 4, 0, 4, 4, 4, 14, 2, 8, 0, 12, 2, 6, 6, 2, 8, 4, 4, 9, 3, 4, 2, 10, 12, 5, 3, 4, 4, 4, 10, 6, 5, 7, 2, 6, 4, 0, 12, 14, 2, 4, 4, 12, 8, 8, 4, 4, 4, 8, 8, 6, 2, 8, 8, 4, 8, 8, 4, 8, 4, 4
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2024

Keywords

Crossrefs

Positions of 0 are A068361.
The opposite for prime-powers is A377703, differences of A345531.
For prime-powers we have A377781, differences of A065514.
The opposite is A377784, differences of A377783 (union A378040).
First-differences of A378032.
Restriction of A378036, differences of A378033.
The opposite for squarefree numbers is A378037, differences of A112926.
For squarefree numbers we have A378038, differences of A112925.
The unrestricted opposite is A378039, differences of A120327 (union A162966).
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes (sums A337030), zeros A068360.
A061399 counts nonsquarefree numbers between primes (sums A378086), zeros A068361.
A070321 gives the greatest squarefree number up to n.
A377046 encodes k-differences of nonsquarefree numbers, zeros A377050.

Programs

  • Mathematica
    Differences[Table[NestWhile[#-1&,Prime[n],#>1&&SquareFreeQ[#]&],{n,100}]]

Formula

a(n) = A378036(prime(n)).

A378039 a(1)=3; a(n>1) = n-th first difference of A120327(k) = least nonsquarefree number greater than k.

Original entry on oeis.org

3, 0, 0, 4, 0, 0, 0, 1, 3, 0, 0, 4, 0, 0, 0, 2, 0, 2, 0, 4, 0, 0, 0, 1, 2, 0, 1, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 1, 3, 0, 0, 1, 1, 2, 0, 2, 0, 2, 0, 4, 0, 0, 0, 3, 0, 0, 1, 4, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 1, 4, 0, 0, 0, 1, 3, 0, 0, 4, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2024

Keywords

Comments

The union is {0,1,2,3,4}.

Crossrefs

Positions of 0's are A005117.
Positions of 4's are A007675 - 1, except first term.
Positions of 1's are A068781.
Positions of 2's are A073247 - 1.
Positions of 3's are A073248 - 1, except first term.
First-differences of A120327.
For prime-powers we have A377780, first-differences of A000015.
Restriction is A377784 (first-differences of A377783, union A378040).
The opposite is A378036 (differences A378033), for prime-powers A377782.
The opposite for squarefree is A378085, differences of A070321
For squarefree we have A378087, restriction A378037, differences of A112926.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.

Programs

  • Mathematica
    Differences[Table[NestWhile[#+1&,n,#>1&&SquareFreeQ[#]&],{n,100}]]

A378086 Number of nonsquarefree numbers < prime(n).

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 5, 6, 7, 11, 11, 13, 14, 14, 16, 20, 22, 23, 25, 26, 27, 29, 31, 33, 36, 39, 39, 40, 41, 42, 49, 50, 53, 53, 57, 58, 61, 63, 64, 68, 70, 71, 74, 75, 76, 77, 81, 84, 86, 87, 88, 90, 91, 97, 99, 101, 103, 104, 107, 109, 109, 113, 119, 120, 121
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2024

Keywords

Examples

			The nonsquarefree numbers counted under each term begin:
  n=1: n=2: n=3: n=4: n=5: n=6: n=7: n=8: n=9: n=10: n=11: n=12:
  --------------------------------------------------------------
   .    .    4    4    9    12   16   18   20   28    28    36
                       8    9    12   16   18   27    27    32
                       4    8    9    12   16   25    25    28
                            4    8    9    12   24    24    27
                                 4    8    9    20    20    25
                                      4    8    18    18    24
                                           4    16    16    20
                                                12    12    18
                                                9     9     16
                                                8     8     12
                                                4     4     9
                                                            8
                                                            4
		

Crossrefs

For nonprime numbers we have A014689.
Restriction of A057627 to the primes.
First-differences are A061399 (zeros A068361), squarefree A061398 (zeros A068360).
For composite instead of squarefree we have A065890.
For squarefree we have A071403, differences A373198.
Greatest is A378032 (differences A378034), restriction of A378033 (differences A378036).
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A070321 gives the greatest squarefree number up to n.
A112925 gives the greatest squarefree number between primes, differences A378038.
A112926 gives the least squarefree number between primes, differences A378037.
A120327 gives the least nonsquarefree number >= n, first-differences A378039.
A377783 gives the least nonsquarefree > prime(n), differences A377784.

Programs

  • Mathematica
    Table[Length[Select[Range[Prime[n]],!SquareFreeQ[#]&]],{n,100}]
  • Python
    from math import isqrt
    from sympy import prime, mobius
    def A378086(n): return (p:=prime(n))-sum(mobius(k)*(p//k**2) for k in range(1,isqrt(p)+1)) # Chai Wah Wu, Dec 05 2024

Formula

a(n) = A057627(prime(n)).

A372683 Least squarefree number >= 2^n.

Original entry on oeis.org

1, 2, 5, 10, 17, 33, 65, 129, 257, 514, 1027, 2049, 4097, 8193, 16385, 32770, 65537, 131073, 262145, 524289, 1048577, 2097154, 4194305, 8388609, 16777217, 33554433, 67108865, 134217730, 268435457, 536870913, 1073741826, 2147483649, 4294967297, 8589934594
Offset: 0

Views

Author

Gus Wiseman, May 26 2024

Keywords

Examples

			The terms together with their binary expansions and binary indices begin:
       1:                    1 ~ {1}
       2:                   10 ~ {2}
       5:                  101 ~ {1,3}
      10:                 1010 ~ {2,4}
      17:                10001 ~ {1,5}
      33:               100001 ~ {1,6}
      65:              1000001 ~ {1,7}
     129:             10000001 ~ {1,8}
     257:            100000001 ~ {1,9}
     514:           1000000010 ~ {2,10}
    1027:          10000000011 ~ {1,2,11}
    2049:         100000000001 ~ {1,12}
    4097:        1000000000001 ~ {1,13}
    8193:       10000000000001 ~ {1,14}
   16385:      100000000000001 ~ {1,15}
   32770:     1000000000000010 ~ {2,16}
   65537:    10000000000000001 ~ {1,17}
  131073:   100000000000000001 ~ {1,18}
  262145:  1000000000000000001 ~ {1,19}
  524289: 10000000000000000001 ~ {1,20}
		

Crossrefs

For primes instead of powers of two we have A112926, opposite A112925, sum A373197, length A373198.
Counting zeros instead of all bits gives A372473, firsts of A372472.
These are squarefree numbers at indices A372540, firsts of A372475.
Counting ones instead of all bits gives A372541, firsts of A372433.
The opposite (greatest squarefree number <= 2^n) is A372889.
The difference from 2^n is A373125.
For prime instead of squarefree we have:
- bits A372684, firsts of A035100
- zeros A372474, firsts of A035103
- ones A372517, firsts of A014499
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A005117 lists squarefree numbers.
A030190 gives binary expansion, reversed A030308, length A070939 or A029837.
A061398 counts squarefree numbers between primes (exclusive).
A077643 counts squarefree terms between powers of 2, run-lengths of A372475.
A143658 counts squarefree numbers up to 2^n.

Programs

  • Mathematica
    Table[NestWhile[#+1&,2^n,!SquareFreeQ[#]&],{n,0,10}]
  • PARI
    a(n) = my(k=2^n); while (!issquarefree(k), k++); k; \\ Michel Marcus, May 29 2024
    
  • Python
    from itertools import count
    from sympy import factorint
    def A372683(n): return next(i for i in count(1<Chai Wah Wu, Aug 26 2024

Formula

a(n) = A005117(A372540(n)).
a(n) = A067535(2^n). - R. J. Mathar, May 31 2024

A372684 Least k such that prime(k) >= 2^n.

Original entry on oeis.org

1, 3, 5, 7, 12, 19, 32, 55, 98, 173, 310, 565, 1029, 1901, 3513, 6543, 12252, 23001, 43391, 82026, 155612, 295948, 564164, 1077872, 2063690, 3957810, 7603554, 14630844, 28192751, 54400029, 105097566, 203280222, 393615807, 762939112, 1480206280, 2874398516, 5586502349
Offset: 1

Views

Author

Gus Wiseman, May 30 2024

Keywords

Examples

			The numbers prime(a(n)) together with their binary expansions and binary indices begin:
        2:                       10 ~ {2}
        5:                      101 ~ {1,3}
       11:                     1011 ~ {1,2,4}
       17:                    10001 ~ {1,5}
       37:                   100101 ~ {1,3,6}
       67:                  1000011 ~ {1,2,7}
      131:                 10000011 ~ {1,2,8}
      257:                100000001 ~ {1,9}
      521:               1000001001 ~ {1,4,10}
     1031:              10000000111 ~ {1,2,3,11}
     2053:             100000000101 ~ {1,3,12}
     4099:            1000000000011 ~ {1,2,13}
     8209:           10000000010001 ~ {1,5,14}
    16411:          100000000011011 ~ {1,2,4,5,15}
    32771:         1000000000000011 ~ {1,2,16}
    65537:        10000000000000001 ~ {1,17}
   131101:       100000000000011101 ~ {1,3,4,5,18}
   262147:      1000000000000000011 ~ {1,2,19}
   524309:     10000000000000010101 ~ {1,3,5,20}
  1048583:    100000000000000000111 ~ {1,2,3,21}
  2097169:   1000000000000000010001 ~ {1,5,22}
  4194319:  10000000000000000001111 ~ {1,2,3,4,23}
  8388617: 100000000000000000001001 ~ {1,4,24}
		

Crossrefs

The opposite (greatest k such that prime(k) <= 2^n) is A007053.
Positions of first appearances in A035100.
The distance from prime(a(n)) to 2^n is A092131.
Counting zeros instead of all bits gives A372474, firsts of A035103.
Counting ones instead of all bits gives A372517, firsts of A014499.
For primes between powers of 2:
- sum A293697
- length A036378
- min A104080 or A014210
- max A014234, delta A013603
For squarefree numbers between powers of 2:
- sum A373123
- length A077643, run-lengths of A372475
- min A372683, delta A373125, indices A372540
- max A372889, delta A373126, indices A143658
For squarefree numbers between primes:
- sum A373197
- length A373198 = A061398 - 1
- min A000040
- max A112925, opposite A112926

Programs

  • Mathematica
    Table[PrimePi[If[n==1,2,NextPrime[2^n]]],{n,30}]
  • PARI
    a(n) = primepi(nextprime(2^n)); \\ Michel Marcus, May 31 2024

Formula

a(n>1) = A007053(n) + 1.
a(n) = A000720(A104080(n)).
prime(a(n)) = A104080(n).
prime(a(n)) - 2^n = A092131(n).

Extensions

More terms from Michel Marcus, May 31 2024

A373409 Length of the n-th maximal antirun of nonsquarefree numbers differing by more than one.

Original entry on oeis.org

2, 6, 2, 5, 2, 1, 6, 4, 2, 7, 1, 5, 2, 2, 1, 4, 4, 3, 6, 2, 2, 4, 7, 5, 7, 1, 1, 6, 6, 2, 3, 4, 7, 3, 3, 5, 1, 3, 1, 3, 2, 2, 3, 5, 5, 7, 1, 5, 7, 5, 1, 8, 4, 2, 5, 2, 2, 3, 3, 1, 7, 3, 4, 7, 1, 5, 2, 5, 2, 6, 7, 6, 7, 5, 1, 2, 3, 5, 6, 4, 1, 3, 5, 7, 2, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2024

Keywords

Comments

An antirun of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by more than one.
Conjecture: The maximum is 9, and there is no antirun of more than 9 nonsquarefree numbers. Confirmed up to 100,000,000.

Examples

			Row-lengths of:
   4   8
   9  12  16  18  20  24
  25  27
  28  32  36  40  44
  45  48
  49
  50  52  54  56  60  63
  64  68  72  75
  76  80
  81  84  88  90  92  96  98
  99
The first maximal antirun of length 9 is the following, shown with prime indices:
  6345: {2,2,2,3,15}
  6348: {1,1,2,9,9}
  6350: {1,3,3,31}
  6352: {1,1,1,1,78}
  6354: {1,2,2,71}
  6356: {1,1,4,49}
  6358: {1,5,7,7}
  6360: {1,1,1,2,3,16}
  6363: {2,2,4,26}
		

Crossrefs

Positions of first appearances are A373573, sorted A373574.
Functional neighbors: A027833, A053797, A068781, A373127, A373403, A373410, A373412.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    Length/@Split[Select[Range[1000],!SquareFreeQ[#]&],#1+1!=#2&]//Most
Previous Showing 31-40 of 94 results. Next