cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A333843 Expansion of g.f.: Sum_{k>=1} k * x^(k^3) / (1 - x^(k^3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 4, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 07 2020

Keywords

Comments

Sum of cube roots of cube divisors of n.

Crossrefs

Programs

  • Mathematica
    nmax = 108; CoefficientList[Series[Sum[k x^(k^3)/(1 - x^(k^3)), {k, 1, Floor[nmax^(1/3)] + 1}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, #^(1/3) &, IntegerQ[#^(1/3)] &], {n, 108}]
    f[p_, e_] := (p^(Floor[e/3] + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 01 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, (f[i,1]^(f[i,2]\3 + 1) - 1)/(f[i,1] - 1));} \\ Amiram Eldar, Sep 05 2023

Formula

Dirichlet g.f.: zeta(s) * zeta(3*s-1).
If n = Product (p_j^k_j) then a(n) = Product ((p_j^(floor(k_j/3) + 1) - 1)/(p_j - 1)).
Sum_{k=1..n} a(k) ~ Pi^2*n/6 + zeta(2/3)*n^(2/3)/2. - Vaclav Kotesovec, Dec 01 2020
a(n) = A000203(A053150(n)) (the sum of divisors of the cube root of largest cube dividing n). - Amiram Eldar, Sep 05 2023

A248780 Number of cubes that divide n!

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 3, 6, 6, 6, 8, 8, 8, 24, 36, 36, 36, 36, 42, 112, 112, 112, 128, 192, 192, 240, 270, 270, 270, 270, 330, 792, 792, 792, 864, 864, 864, 2016, 2912, 2912, 4704, 4704, 4704, 5376, 5760, 5760, 6144, 6144, 7680, 15360, 16320, 16320, 18360
Offset: 1

Views

Author

Clark Kimberling, Oct 15 2014

Keywords

Examples

			a(9) counts these divisors of 9!:  1, 8, 27, 64, 216, 1728.
		

Crossrefs

Programs

  • Mathematica
    z = 130; m = 3; f[n_] := f[n] = FactorInteger[n!];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    a[n_] := Apply[Times, 1 + Floor[v[n]/m]]
    A248780 = Table[a[n], {n, 1, z}] (* simplified by M. F. Hasler, Oct 22 2014 *)
  • PARI
    a(n)=sumdiv(n!,d,ispower(d,3))
    for(n=1,50,print1(a(n),", ")) \\ Derek Orr, Oct 20 2014, simplified by M. F. Hasler, Oct 22 2014
    
  • PARI
    A248780(n)=prod(i=1,#n=factor(n!)[,2],1+n[i]\3) \\ M. F. Hasler, Oct 22 2014

Formula

a(n) = product_{i=1..r} 1+floor(e[i]/3), where product_{i=1..r} p[i]^e[i] is the prime factorization of n!. - M. F. Hasler, Oct 22 2014
a(n) = A061704(A000142(n)). - Michel Marcus, Mar 27 2015

A380395 The number of unitary divisors of n that are cubes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 23 2025

Keywords

Comments

First differs from A318672 at n = 64.
The sum of unitary divisors of n that are cubes is A380396(n).

Examples

			a(8) = 2 since 8 has 2 unitary divisors that are cubes, 1 = 1^3 and 8 = 2^3.
a(216) = 4 since 216 has 4 unitary divisors that are cubes, 1 = 1^3, 8 = 2^3, 27 = 3^3 and 216 = 6^3.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2^If[Divisible[e, 3], 1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 2^if(f[i, 2]%3, 0, 1));}

Formula

a(n) = Sum_{d|n, gcd(d, n/d) = 1} [d is cube], where [] is the Iverson bracket.
Multiplicative with a(p^e) = 2 is e is divisible by 3, and 1 otherwise.
a(n) = abs(A307427(n)).
a(n) = A061704(n) - A380397(n).
a(n) >= 1, with equality if and only if n is not in A366761.
a(n) <= A061704(n), with equality if and only if n is biquadratefree (A046100).
Dirichlet g.f.: zeta(s)*zeta(3*s)/zeta(4*s).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(3)/zeta(4) = 1.11062653532614811717... .
In general, the asymptotic mean of the number of unitary divisors of n that are m-th powers is zeta(m)/zeta(m+1), for m >= 2.

A309082 a(n) = n - floor(n/2^3) + floor(n/3^3) - floor(n/4^3) + ...

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 21, 22, 23, 25, 26, 27, 28, 29, 29, 30, 31, 32, 33, 34, 35, 36, 36, 37, 38, 39, 40, 41, 42, 43, 43, 44, 45, 46, 47, 48, 50, 51, 51, 52, 53, 54, 55, 56, 57, 58, 57, 58, 59, 60, 61, 62, 63, 64, 64, 65, 66, 67
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(k + 1) Floor[n/k^3], {k, 1, n}], {n, 1, 75}]
    nmax = 75; CoefficientList[Series[1/(1 - x) Sum[(-1)^(k + 1) x^(k^3)/(1 - x^(k^3)), {k, 1, Floor[nmax^(1/3)] + 1}], {x, 0, nmax}], x] // Rest
    Table[Sum[Boole[IntegerQ[d^(1/3)] && OddQ[d]], {d, Divisors[n]}] - Sum[Boole[IntegerQ[d^(1/3)] && EvenQ[d]], {d, Divisors[n]}], {n, 1, 75}] // Accumulate

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} (-1)^(k+1) * x^(k^3)/(1 - x^(k^3)).
a(n) ~ 3*zeta(3)*n/4. - Vaclav Kotesovec, Oct 12 2019

A281613 Expansion of Sum_{i>=1} x^(i^3)/(1 - x^(i^3)) / Product_{j>=1} (1 - x^(j^3)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 23, 27, 30, 33, 36, 39, 42, 45, 48, 54, 58, 62, 67, 72, 77, 82, 87, 96, 102, 108, 116, 123, 130, 137, 144, 156, 164, 172, 183, 192, 201, 210, 219, 234, 244, 254, 268, 279, 290, 303, 315, 334, 347, 360, 378, 392, 406, 423, 438, 462, 479, 496, 519, 537, 555, 577
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 25 2017

Keywords

Comments

Total number of parts in all partitions of n into cubes.
Convolution of A003108 and A061704.

Examples

			a(9) = 11 because we have [8, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1] and 2 + 9 = 11.
		

Crossrefs

Programs

  • Mathematica
    nmax = 70; Rest[CoefficientList[Series[Sum[x^i^3/(1 - x^i^3), {i, 1, nmax}]/Product[1 - x^j^3, {j, 1, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{i>=1} x^(i^3)/(1 - x^(i^3)) / Product_{j>=1} (1 - x^(j^3)).

A295657 Multiplicative with a(p^e) = p^floor((e-1)/2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Apply[Times, FactorInteger[#] /. {p_, e_} /; p > 0 :> p^Floor[(e - 1)/2]] &, 105] (* Michael De Vlieger, Nov 28 2017 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^floor((f[i,2]-1)/2));} \\ Amiram Eldar, Nov 30 2022

Formula

a(1) = 1; for n > 1, a(n) = A020639(n)^A004526(A067029(n)-1) * a(A028234(n)).
a(n) = A000188(A003557(n)).
a(n) = 1 iff A212793(n) = 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 15/Pi^2 = 1.519817... (A082020). - Amiram Eldar, Nov 30 2022

A291208 Number of noncube divisors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 2, 2, 3, 1, 5, 1, 3, 3, 3, 1, 5, 1, 5, 3, 3, 1, 6, 2, 3, 2, 5, 1, 7, 1, 4, 3, 3, 3, 8, 1, 3, 3, 6, 1, 7, 1, 5, 5, 3, 1, 8, 2, 5, 3, 5, 1, 6, 3, 6, 3, 3, 1, 11, 1, 3, 5, 4, 3, 7, 1, 5, 3, 7, 1, 10, 1, 3, 5, 5, 3, 7, 1, 8, 3, 3, 1, 11, 3, 3, 3, 6, 1, 11, 3, 5, 3, 3, 3, 10, 1, 5, 5, 8, 1, 7, 1, 6, 7
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 21 2017

Keywords

Examples

			a(8) = 2 because 8 has 4 divisors {1, 2, 4, 8} among which 2 are noncubes {2, 4}.
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; Rest[CoefficientList[Series[Sum[(x^k - x^k^3)/((1 - x^k) (1 - x^k^3)), {k, 1, nmax}], {x, 0, nmax}], x]]
    f1[p_, e_] := e + 1; f2[p_, e_] := 1 + Floor[e/3]; a[1] = 0; a[n_] := Module[{fct = FactorInteger[n]}, Times @@ f1 @@@ fct - Times @@ f2 @@@ fct]; Array[a, 100] (* Amiram Eldar, Jan 30 2025 *)
  • PARI
    a(n) = sumdiv(n, d, !ispower(d, 3)); \\ Michel Marcus, Aug 21 2017
    
  • Python
    from math import prod
    from sympy import factorint
    def A291208(n):
        f = factorint(n).values()
        return prod(e+1 for e in f)-prod(e//3+1 for e in f) # Chai Wah Wu, Jun 05 2025

Formula

G.f.: Sum_{k>=1} x^A007412(k)/(1 - x^A007412(k)).
G.f.: Sum_{k>=1} (x^k - x^(k^3))/((1 - x^k)*(1 - x^(k^3))).
a(n) = A000005(n) - A061704(n).
From Amiram Eldar, Jan 30 2025: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s) - zeta(3*s)).
Sum_{k=1..n} a(k) ~ n*(log(n) + 2*gamma - zeta(3) - 1), where gamma is Euler's constant (A001620). (End)

A294333 Number of partitions of n into cubes dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 3, 1, 8, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 11, 4, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 14, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 28 2017

Keywords

Examples

			a(8) = 2 because 8 has 4 divisors {1, 2, 4, 8} among which 2 are cubes {1, 8} therefore we have [8] and [1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - Boole[Mod[n, k] == 0 && IntegerQ[k^(1/3)]] x^k), {k, 1, n}], {x, 0, n}], {n, 0, 105}]
  • PARI
    cubes_dividing(n) = select(d -> ispower(d,3),divisors(n));
    partitions_into(n,parts,from=1) = if(!n,1,my(k = #parts, s=0); for(i=from,k,if(parts[i]<=n, s += partitions_into(n-parts[i],parts,i))); (s));
    A294333(n) = if(n<2,1,partitions_into(n,vecsort(cubes_dividing(n), , 4))); \\ Antti Karttunen, Jul 21 2018

Formula

a(n) = 1 if n is a cubefree.
a(n) = 2 if n is a cube of prime.

A359944 Number of divisors d of n such that d-1 is a cube.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 19 2023

Keywords

Comments

The Cartesian equation for the Folium of Descartes is given as x^3 + y^3 = 3*k*x*y. If we set 3*k = n, then a(n)-1 is the number of integer solutions such that x,y > 0 and y >= x. Let d = m^3+1 be a divisor of n, then x = 3*k*m/(m^3+1); y = 3*k*m^2/(m^3+1) is a solution. - Thomas Scheuerle, Aug 07 2024

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, IntegerQ[Surd[#-1, 3]] &]; Array[a, 100] (* Amiram Eldar, Aug 09 2023 *)
  • PARI
    a(n) = sumdiv(n, d, ispower(d-1, 3));

Formula

G.f.: Sum_{k>=0} x^(k^3+1)/(1 - x^(k^3+1)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=0} 1/(k^3+1) = 1 + A339606 = 1.686503... . - Amiram Eldar, Jan 01 2024

A365487 The number of divisors of the largest cube dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 4, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 05 2023

Keywords

Comments

The number of divisors of the cube root of the largest cube dividing n, A053150(n), is A061704(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 3*Floor[e/3] + 1; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> 3*(x\3) + 1, factor(n)[, 2]));

Formula

a(n) = A000005(A008834(n)).
Multiplicative with a(p^e) = 3*floor(e/3) + 1.
a(n) = 1 if and only if n is cubefree (A004709).
a(n) <= A000005(n) with equality if and only if n is a cube (A000578).
Dirichlet g.f.: zeta(s) * zeta(3*s) * Product_{p prime} (1 + 2/p^(3*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(3) * Product_{p prime} (1 + 2/p^3) = 1.6552343865608... .
Previous Showing 11-20 of 25 results. Next