cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A062143 Fifth column sequence of coefficient triangle A062137 of generalized Laguerre polynomials n!*L(n,3,x).

Original entry on oeis.org

1, 40, 1080, 25200, 554400, 11975040, 259459200, 5708102400, 128432304000, 2968213248000, 70643475302400, 1733976211968000, 43927397369856000, 1148870392750080000, 31019500604252160000, 864410083505160192000
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Comments

The coefficients of the numerator polynomials N(m,x) of the e.g.f. for column m (here m=4) give triangle A062145.

Examples

			a(3) = (3+4)! * binomial(3+7,7) / 4! = (5040 * 120) / 24 = 25200. - _Indranil Ghosh_, Feb 23 2017
		

Crossrefs

Programs

  • Magma
    [Factorial(n+4)*Binomial(n+7,7)/Factorial(4): n in [0..20]]; // G. C. Greubel, May 12 2018
  • Mathematica
    Table[(n+4)!*Binomial[n+7,7]/4!,{n,0,15}] (* Indranil Ghosh, Feb 23 2017 *)
  • PARI
    a(n) = (n+4)!*binomial(n+7,7)/4! \\ Indranil Ghosh, Feb 23 2017
    
  • Python
    import math
    f=math.factorial
    def C(n,r):return f(n)/f(r)/f(n-r)
    def A062143(n):return f(n+4)*C(n+7,7)/f(4) # Indranil Ghosh, Feb 23 2017
    

Formula

a(n) = (n+4)!*binomial(n+7, 7)/4!;
E.g.f.: (1 + 28*x + 126*x^2 + 140*x^3 + 35*x^4)/(1-x)^12.
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i) * x^(k-j) then a(n-4) = (-1)^n*f(n,4,-8), (n>=4). - Milan Janjic, Mar 01 2009

A105938 a(n) = binomial(n+2,2)*binomial(n+5,2).

Original entry on oeis.org

10, 45, 126, 280, 540, 945, 1540, 2376, 3510, 5005, 6930, 9360, 12376, 16065, 20520, 25840, 32130, 39501, 48070, 57960, 69300, 82225, 96876, 113400, 131950, 152685, 175770, 201376, 229680, 260865, 295120, 332640, 373626, 418285, 466830, 519480, 576460
Offset: 0

Views

Author

Zerinvary Lajos, Apr 27 2005

Keywords

Examples

			If n=0 then C(0+2,0)*C(0+5,2) = C(2,0)*C(5,2) = 1*10 = 10.
If n=9 then C(9+2,9)*C(9+5,2) = C(11,9)*C(14,2) = 55*91 = 5005.
		

Crossrefs

Subsequence of A085780.

Programs

  • Magma
    A105938:= func< n | 30*Binomial(n+5,5)/(n+3) >;
    [A105938(n): n in [0..40]]; // G. C. Greubel, Mar 11 2025
    
  • Maple
    a:= n-> binomial(n+2,n)*binomial(n+5,2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Oct 16 2008
  • Mathematica
    Table[n(n+1)(n+3)(n+4)/4, {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 26 2011 *)
    Table[Binomial[n + 2, n] Binomial[n + 5, 2], {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {10, 45, 126, 280, 540}, 40] (* Harvey P. Dale, Sep 05 2013 *)
  • SageMath
    def A105938(n): return 30*binomial(n+5,5)//(n+3)
    print([A105938(n) for n in range(41)]) # G. C. Greubel, Mar 11 2025

Formula

G.f.: (10 - 5*x + x^2)/(1-x)^5. - Alois P. Heinz, Oct 16 2008
a(0)=10, a(1)=45, a(2)=126, a(3)=280, a(4)=540; for n>4, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Sep 05 2013
a(n) = A000217(n+1)*A000217(n+4). - R. J. Mathar, Nov 29 2015
a(n) = A000096(n+1)*A000096(n+2). - Bruno Berselli, Sep 21 2016
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=0} 1/a(n) = 5/36.
Sum_{n>=0} (-1)^n/a(n) = 1/12. (End)
From G. C. Greubel, Mar 11 2025: (Start)
a(n) = 30*A000389(n+5)/(n+3).
E.g.f.: (1/4)*(40 + 140*x + 92*x^2 + 18*x^3 + x^4)*exp(x). (End)

A105940 a(n) = binomial(n+5, 5)*binomial(n+8, 5).

Original entry on oeis.org

56, 756, 5292, 25872, 99792, 324324, 924924, 2378376, 5621616, 12388376, 25729704, 50791104, 95938752, 174350232, 306211752, 521694096, 864913896, 1399125420, 2213431220, 3431347920, 5221616400, 7811703900, 11504509380, 16698853080, 23914406880, 33821804016
Offset: 0

Views

Author

Zerinvary Lajos, Apr 27 2005

Keywords

Examples

			a(0) = C(0+5,0)*C(0+8,5) = C(5,0)*C(8,5) = 1*56 = 56
a(6) = C(6+5,6)*C(6+8,5) = C(11,6)*C(14,5) = 462*2002 = 924924.
		

Crossrefs

Cf. A062145.

Programs

  • Magma
    A105940:= func< n | Binomial(n+5,5)*Binomial(n+8,5) >;
    [A105940(n): n in [0..40]]; // G. C. Greubel, Mar 11 2025
    
  • Maple
    with(combinat); for i from 0 to 25 do print(i,numbcomb(i+5,i)*numbcomb(i+8,5)); end; # Jim Nastos, Oct 26 2005
  • Mathematica
    a[n_] := Binomial[n + 5, 5] * Binomial[n + 8, 5]; Array[a, 25, 0] (* Amiram Eldar, Sep 01 2022 *)
  • SageMath
    def A105940(n): return binomial(n+5,5)*binomial(n+8,5)
    print([A105940(n) for n in range(41)]) # G. C. Greubel, Mar 11 2025

Formula

G.f.: 28*(2+x)*(1+2*x) / (1-x)^11. - Colin Barker, Jan 28 2013
From Amiram Eldar, Sep 01 2022: (Start)
Sum_{n>=0} 1/a(n) = 580367/1764 - 100*Pi^2/3.
Sum_{n>=0} (-1)^n/a(n) = 74537/588 - 1280*log(2)/7. (End)

Extensions

More terms from Jim Nastos, Oct 26 2005

A105942 a(n) = binomial(n+6,6)*binomial(n+9,6).

Original entry on oeis.org

84, 1470, 12936, 77616, 360360, 1387386, 4624620, 13741728, 37165128, 92912820, 217273056, 479693760, 1007356896, 2024399916, 3912705720, 7303717344, 13213962300, 23241027810, 39841761960, 66720654000, 109363854600, 175763337750, 277386503940, 430459323840
Offset: 0

Views

Author

Zerinvary Lajos, Apr 27 2005

Keywords

Examples

			If n=0 then C(0+6,0)*C(0+9,6) = C(6,0)*C(9,6) = 1*84 = 84.
If n=6 then C(6+6,6)*C(6+9,6) = C(12,6)*C(15,6) = 924*5005 = 4624620.
		

Crossrefs

Cf. A062145.

Programs

  • Magma
    A105942:= func< n | Binomial(n+6,6)*Binomial(n+9,6)/42 >;
    [A105942(n): n in [0..40]]; // G. C. Greubel, Mar 11 2025
    
  • Mathematica
    Table[Binomial[n+6,n]Binomial[n+9,6],{n,0,30}] (* or *) CoefficientList[ Series[-((42 (x+1) (x (2 x+7)+2))/(x-1)^13),{x,0,30}],x] (* Harvey P. Dale, Sep 14 2012 *)
  • SageMath
    def A105942(n): return binomial(n+6,6)*binomial(n+9,6)
    print([A105942(n) for n in range(41)]) # G. C. Greubel, Mar 11 2025

Formula

G.f.: 42*(1 + x)*(2 + 7*x + 2*x^2)/(1-x)^13. - Harvey P. Dale, Sep 14 2012
a(0)=84, a(1)=1470, a(2)=12936, a(3)=77616, a(4)=360360, a(5)=1387386, a(6)=4624620, a(7)=13741728, a(8)=37165128, a(9)=92912820, a(10)=217273056, a(11)=479693760, a(12)=1007356896, a(n) = 13*a(n-1) -78*a(n-2) +286*a(n-3) -715*a(n-4) +1287*a(n-5) -1716*a(n-6) +1716*a(n-7) -1287*a(n-8) +715*a(n-9) -286*a(n-10) +78*a(n-11) -13*a(n-12) +a(n-13). - Harvey P. Dale, Sep 14 2012
From Amiram Eldar, Sep 08 2022: (Start)
Sum_{n>=0} 1/a(n) = 10446039/3920 - 270*Pi^2.
Sum_{n>=0} (-1)^n/a(n) = 82911/560 - 15*Pi^2. (End)

Extensions

Corrected and extended by Harvey P. Dale, Sep 14 2012

A105943 a(n) = binomial(n+7,7) * binomial(n+10,7).

Original entry on oeis.org

120, 2640, 28512, 205920, 1132560, 5096520, 19631040, 66745536, 204787440, 576438720, 1507608960, 3700494720, 8593371072, 19004570640, 40244973120, 81980500800, 161264274600, 307350735120, 569168028000, 1026681084000, 1807851474000, 3113521983000
Offset: 0

Views

Author

Zerinvary Lajos, Apr 27 2005

Keywords

Examples

			If n=0 then C(0+7,0)*C(0+10,7) = C(7,0)*C(10,7) = 1*120 = 120.
If n=6 then C(6+7,6)*C(6+10,7) = C(13,6)*C(16,7) = 1716*11440 = 19631040.
		

Crossrefs

Cf. A062145.

Programs

  • Magma
    A105943:= func< n | Binomial(n+7,7)*Binomial(n+10,7) >;
    [A105943(n): n in [0..40]]; // G. C. Greubel, Mar 10 2025
    
  • Maple
    A105943:=n->binomial(n+7,n)*binomial(n+10,7): seq(A105943(n), n=0..40); # Wesley Ivan Hurt, Apr 18 2017
  • Mathematica
    Table[Binomial[n+7,n]Binomial[n+10,7],{n,0,30}] (* Harvey P. Dale, Nov 14 2011 *)
  • Python
    A105943_list, m = [], [3432, -3432, 1320, 0]+[120]*11
    for _ in range(10**2):
        A105943_list.append(m[-1])
        for i in range(14):
            m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
    
  • SageMath
    def A105943(n): return binomial(n+7,7)*binomial(n+10,7)
    print([A105943(n) for n in range(41)]) # G. C. Greubel, Mar 10 2025

Formula

G.f.: 24*(5 + 35*x + 63*x^2 +35*x^3 + 5*x^4)/(1-x)^15. - Harvey P. Dale, Nov 14 2011
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 114905939/6480 - 5390*Pi^2/3.
Sum_{n>=0} (-1)^n/a(n) = 14336*log(2)/9 - 3577279/3240. (End)

Extensions

More terms from Harvey P. Dale, Nov 14 2011

A105944 a(n) = binomial(n+8,n)*binomial(n+11,8).

Original entry on oeis.org

165, 4455, 57915, 495495, 3185325, 16563690, 73002930, 281582730, 972740340, 3062330700, 8904315420, 24168856140, 61764854580, 149660993790, 345855237750, 766005304350, 1632800780325, 3361648665375, 6705510829875, 12993932469375, 24518985616125
Offset: 0

Views

Author

Zerinvary Lajos, Apr 27 2005

Keywords

Examples

			If n=0 then C(0+8,0)*C(0+11,8) = C(8,0)*C(11,8) = 1*165 = 165.
If n=4 then C(4+8,4)*C(4+11,8) = C(12,4)*C(15,8) = 495*6435 = 3185325.
		

Crossrefs

Programs

  • Magma
    A105944:= func< n | Binomial(n+8,8)*Binomial(n+11,8) >;
    [A105944(n): n in [0..40]]; // G. C. Greubel, Mar 10 2025
    
  • Mathematica
    Table[Binomial[n+8,n]Binomial[n+11,8],{n,0,30}] (* Harvey P. Dale, Apr 26 2018 *)
  • SageMath
    def A105994(n): return binomial(n+8,8)*binomial(n+11,8)
    print([A105994(n) for n in range(41)]) # G. C. Greubel, Mar 10 2025

Formula

G.f.: 165*(1+x)*(1+9*x+19*x^2+9*x^3+x^4)/(1-x)^17. - Colin Barker, Jan 28 2013
From Amiram Eldar, Sep 08 2022: (Start)
Sum_{n>=0} 1/a(n) = 1493776559/14175 - 32032*Pi^2/3.
Sum_{n>=0} (-1)^n/a(n) = 112*Pi^2 - 1740989/1575. (End)
a(n) = 165*A030648(n). - G. C. Greubel, Mar 10 2025

Extensions

More terms from Colin Barker, Jan 28 2013

A107417 a(n) = binomial(n+2,2)*binomial(n+5,5).

Original entry on oeis.org

1, 18, 126, 560, 1890, 5292, 12936, 28512, 57915, 110110, 198198, 340704, 563108, 899640, 1395360, 2108544, 3113397, 4503114, 6393310, 8925840, 12273030, 16642340, 22281480, 29484000, 38595375, 50019606, 64226358, 81758656, 103241160, 129389040, 161017472, 199051776
Offset: 0

Views

Author

Zerinvary Lajos, May 26 2005

Keywords

Examples

			If n=0 then C(0+2,2)*C(0+5,5) = C(2,2)*C(5,5) = 1*1 = 1.
If n=3 then C(3+2,2)*C(3+5,5) = C(5,2)*C(8,5) = 10*56 = 560.
		

Crossrefs

Cf. A062145.

Programs

  • Magma
    A107417:= func< n | Binomial(n+2,n)*Binomial(n+5,n) >;
    [A107417(n): n in [0..40]]; // G. C. Greubel, Mar 10 2025
    
  • Mathematica
    Table[Binomial[n+2,2]Binomial[n+5,5],{n,0,40}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{1,18,126,560,1890,5292,12936,28512},40] (* Harvey P. Dale, Feb 18 2012 *)
  • PARI
    for(n=0,40,print1(binomial(n+2,2)*binomial(n+5,5),","))
    
  • SageMath
    def A107417(n): return binomial(n+2,n)*binomial(n+5,n)
    print([A107417(n) for n in range(41)]) # G. C. Greubel, Mar 10 2025

Formula

From Harvey P. Dale, Feb 18 2012: (Start)
a(0)=1, a(1)=18, a(2)=126, a(3)=560, a(4)=1890, a(5)=5292, a(6)=12936, a(7)=28512, a(n)=8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)- 28*a(n-6)+ 8*a(n-7)-a(n-8).
G.f.: (1 + 10*x + 10*x^2)/(1-x)^8. (End)
From Amiram Eldar, Sep 08 2022: (Start)
Sum_{n>=0} 1/a(n) = 25*Pi^2/3 - 5845/72.
Sum_{n>=0} (-1)^n/a(n) = 205/8 - 5*Pi^2/2. (End)
E.g.f.: (1/240)*(240 + 4080*x + 10920*x^2 + 9400*x^3 + 3350*x^4 + 542*x^5 + 39*x^6 + x^7)*exp(x). - G. C. Greubel, Mar 10 2025

Extensions

More terms from Rick L. Shepherd, May 27 2005

A107419 a(n) = binomial(n+4,4)*binomial(n+7,7).

Original entry on oeis.org

1, 40, 540, 4200, 23100, 99792, 360360, 1132560, 3185325, 8179600, 19467448, 43439760, 91706160, 184497600, 355816800, 661028544, 1187785665, 2071432440, 3516320500, 5824819000, 9436206780, 14978106000, 23333661000, 35728290000, 53840548125, 79942445856
Offset: 0

Views

Author

Zerinvary Lajos, May 26 2005

Keywords

Examples

			a(0) = C(0+4,4)*C(0+7,7) = C(4,4)*C(7,7) = 1*1 = 1.
a(6) = C(6+4,4)*C(6+7,7) = C(10,4)*C(13,7) = 210*1716 = 360360.
		

Crossrefs

Cf. A062145.

Programs

  • Magma
    A107419:= func< n | Binomial(n+4,n)*Binomial(n+7,n) >;
    [A107419(n): n in [0..40]]; // G. C. Greubel, Mar 10 2025
    
  • Mathematica
    Table[Binomial[n+4,4]Binomial[n+7,7],{n,0,30}] (* Harvey P. Dale, Jul 27 2019 *)
  • PARI
    for(n=0,29,print1(binomial(n+4,4)*binomial(n+7,7),","))
    
  • SageMath
    def A107419(n): return binomial(n+4,n)*binomial(n+7,n)
    print([A107419(n) for n in range(41)]) # G. C. Greubel, Mar 10 2025

Formula

From Chai Wah Wu, Apr 10 2021: (Start)
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12) for n > 11.
G.f.: (1 + 28*x + 126*x^2 + 140*x^3 + 35*x^4)/(1 - x)^12. (End)
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 392*Pi^2 - 870268/225.
Sum_{n>=0} (-1)^n/a(n) = 56*Pi^2/3 - 3584*log(2)/15 - 441/25. (End)

Extensions

Corrected and extended by Rick L. Shepherd, May 27 2005

A107420 a(n) = binomial(n+5,5)*binomial(n+8,8).

Original entry on oeis.org

1, 54, 945, 9240, 62370, 324324, 1387386, 5096520, 16563690, 48668620, 131405274, 330142176, 779502360, 1743502320, 3718285560, 7601828256, 14966099379, 28482196050, 52568991475, 94362067800, 165133618650, 282337298100, 472506635250, 775303893000, 1249100716500
Offset: 0

Views

Author

Zerinvary Lajos, May 26 2005

Keywords

Examples

			a(0) = C(0+5,5)*C(0+8,8) = C(5,5)*C(8,8) = 1*1 = 1.
a(9) = C(9+5,5)*C(9+8,8) = C(14,5)*C(17,8) = 2002*24310 = 48668620.
		

Crossrefs

Cf. A062145.

Programs

  • Magma
    A107420:= func< n | Binomial(n+5,n)*Binomial(n+8,n) >;
    [A107420(n): n in [0..40]]; // G. C. Greubel, Mar 10 2025
    
  • Mathematica
    a[n_] := Binomial[n + 5, 5] * Binomial[n + 8, 8]; Array[a, 30, 0] (* Amiram Eldar, Sep 06 2022 *)
  • PARI
    for(n=0,29,print1(binomial(n+5,5)*binomial(n+8,8),","))
    
  • SageMath
    def A107420(n): return binomial(n+5,n)*binomial(n+8,n)
    print([A107420(n) for n in range(41)]) # G. C. Greubel, Mar 10 2025

Formula

From Chai Wah Wu, Apr 10 2021: (Start)
a(n) = 14*a(n-1) - 91*a(n-2) + 364*a(n-3) - 1001*a(n-4) + 2002*a(n-5) - 3003*a(n-6) + 3432*a(n-7) - 3003*a(n-8) + 2002*a(n-9) - 1001*a(n-10) + 364*a(n-11) - 91*a(n-12) + 14*a(n-13) - a(n-14) for n > 13.
G.f.: (1 + 40*x + 280*x^2 + 560*x^3 + 350*x^4 + 56*x^5)/(1 - x)^14. (End)
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 2200*Pi^2 - 19150081/882.
Sum_{n>=0} (-1)^n/a(n) = 693421/490 - 20*Pi^2 - 12288*log(2)/7. (End)

Extensions

More terms from Rick L. Shepherd, May 27 2005

A107421 a(n) = binomial(n+6,6)*binomial(n+9,9).

Original entry on oeis.org

1, 70, 1540, 18480, 150150, 924924, 4624620, 19631040, 73002930, 243343100, 739763024, 2078672960, 5456516520, 13495999440, 31674284400, 70950397056, 152432493675, 315413948850, 630827897700, 1223211990000, 2305754601150, 4235059471500, 7595106655500
Offset: 0

Views

Author

Zerinvary Lajos, May 26 2005

Keywords

Examples

			If n=0 then C(0+6,6)*C(0+9,9) = C(6,6)*C(9,9) = 1*1 = 1.
If n=7 then C(7+6,6)*C(7+9,9) = C(13,6)*C(16,9) = 1716*11440 = 19631040.
		

Crossrefs

Cf. A062145.

Programs

  • Magma
    A107421:= func< n | Binomial(n+6,n)*Binomial(n+9,n) >;
    [A107421(n): n in [0..40]]; // G. C. Greubel, Mar 09 2025
    
  • Mathematica
    Table[Binomial[n+6,6]Binomial[n+9,9],{n,0,30}] (* Harvey P. Dale, Jan 30 2013 *)
  • PARI
    for(n=0,29,print1(binomial(n+6,6)*binomial(n+9,9),","))
    
  • SageMath
    def A107421(n): return binomial(n+6,n)*binomial(n+9,n)
    print([A107421(n) for n in range(41)]) # G. C. Greubel, Mar 09 2025

Formula

G.f.: (1+54*x+540*x^2+1680*x^3+1890*x^4+756*x^5+84*x^6)/(1-x)^16. - Harvey P. Dale, Jan 30 2013
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 11583*Pi^2 - 4481289621/39200.
Sum_{n>=0} (-1)^n/a(n) = 73728*log(2)/35 - 225*Pi^2/2 - 13673259/39200. (End)

Extensions

Corrected and extended by Rick L. Shepherd, May 27 2005
Previous Showing 11-20 of 21 results. Next