A085604 T(n,k) = highest power of prime(k) dividing n!, read by rows.
0, 1, 0, 1, 1, 0, 3, 1, 0, 0, 3, 1, 1, 0, 0, 4, 2, 1, 0, 0, 0, 4, 2, 1, 1, 0, 0, 0, 7, 2, 1, 1, 0, 0, 0, 0, 7, 4, 1, 1, 0, 0, 0, 0, 0, 8, 4, 2, 1, 0, 0, 0, 0, 0, 0, 8, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 10, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 10, 5, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 11, 5, 2, 2, 1, 1, 0, 0, 0
Offset: 1
A101203 a(n) = sum of nonprimes <= n.
0, 1, 1, 1, 5, 5, 11, 11, 19, 28, 38, 38, 50, 50, 64, 79, 95, 95, 113, 113, 133, 154, 176, 176, 200, 225, 251, 278, 306, 306, 336, 336, 368, 401, 435, 470, 506, 506, 544, 583, 623, 623, 665, 665, 709, 754, 800, 800, 848, 897, 947, 998, 1050, 1050, 1104, 1159, 1215
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a101203 n = a101203_list !! (n-1) a101203_list = scanl (+) 0 $ zipWith (*) [1..] $ map (1 -) a010051_list -- Reinhard Zumkeller, Oct 10 2013
-
Mathematica
Accumulate[Table[If[PrimeQ[n],0,n],{n,0,60}]] (* Harvey P. Dale, Oct 02 2020 *)
-
PARI
my(s=0); for(k=0,100,if(!isprime(k),s+=k);print1(s", ")); \\ Cino Hilliard, Feb 04 2006
A065856 The (2^n)-th composite number.
4, 6, 9, 15, 26, 48, 88, 168, 323, 627, 1225, 2406, 4736, 9351, 18504, 36655, 72730, 144450, 287147, 571208, 1136971, 2264215, 4510963, 8990492, 17923944, 35743996, 71298762, 142249762, 283859985, 566537515, 1130886504, 2257704401, 4507834166, 9001524190
Offset: 0
Keywords
Examples
composite[1] = composite[2^0] = 4, composite[2] = composite[2^1] = 6, composite[1024] = composite[2^10] = 1225, composite[1073741824] = composite[2^30] = 1130886504.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..70
Programs
-
Mathematica
Composite[n_Integer] := Block[ {k = n + PrimePi[n] + 1 }, While[ k != n + PrimePi[k] + 1, k = n + PrimePi[k] + 1]; Return[ k ]]; Table[ Composite[2^n], {n, 0, 36} ]
Formula
a(n)-pi(a(n))-1 = 2^n.
Extensions
More terms from Robert G. Wilson v, Nov 26 2001
Definition corrected by N. J. A. Sloane, Jun 07 2009
Further corrections from Reinhard Zumkeller, Jun 24 2009
a(32)-a(33) from Chai Wah Wu, Apr 16 2018
A097454 a(n) = (number of nonprimes <= n) - (number of primes <= n).
1, 0, -1, 0, -1, 0, -1, 0, 1, 2, 1, 2, 1, 2, 3, 4, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 9, 10, 9, 10, 9, 10, 11, 12, 13, 14, 13, 14, 15, 16, 15, 16, 15, 16, 17, 18, 17, 18, 19, 20, 21, 22, 21, 22, 23, 24, 25, 26, 25, 26, 25, 26, 27, 28, 29, 30, 29, 30, 31, 32, 31, 32, 31, 32, 33, 34, 35, 36, 35, 36, 37, 38, 37, 38, 39, 40, 41, 42, 41, 42, 43, 44, 45
Offset: 1
Examples
a(7) = -1 because there are 3 nonprimes <= 7 (1,4 and 6) and 4 primes <= 7 (2,3,5 and 7).
Programs
-
Maple
with(numtheory): seq(n-2*pi(n), n=1..93); # Emeric Deutsch, Apr 01 2006
-
Mathematica
qp=0;lst={};Do[If[PrimeQ[n],AppendTo[lst,qp-=1],AppendTo[lst,qp+=1]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 15 2010 *) Accumulate[ -1 + 2 * Boole /@ Not /@ PrimeQ @ Range @ 100] (* Federico Provvedi, Oct 06 2013 *)
-
PARI
compsmprimes(n) = { for(x=1,n, y=composites(x) - pi(x); print1(y",") ) } \\ The number of composite numbers less than or equal to n composites(n) = { my(c,x); c=0; for(x=1,n, if(!isprime(x),c++); ); return(c) } \\ pi(x) prime count function pi(n) = { my(c,x); c=0;forprime(x=1,n,c++);return(c) }
Formula
a(n) = 1 + A072731(n).
a(n) = n - 2*pi(n) = n - 2*A000720(n). - Wesley Ivan Hurt, Jun 16 2013
a(n) - a(n-1) = 1 - 2*A010051(n) for n > 1. - Wesley Ivan Hurt, Dec 18 2018
A257730 Permutation of natural numbers: a(1)=1; a(oddprime(n)) = prime(a(n)), a(not_an_oddprime(n)) = composite(a(n-1)).
1, 4, 2, 9, 7, 6, 3, 16, 14, 12, 23, 8, 17, 26, 24, 21, 13, 35, 5, 15, 27, 39, 53, 36, 33, 22, 51, 10, 43, 25, 37, 40, 56, 75, 52, 49, 83, 34, 72, 18, 19, 62, 59, 38, 54, 57, 101, 78, 102, 74, 69, 114, 89, 50, 98, 28, 30, 86, 73, 82, 41, 55, 76, 80, 134, 106, 149, 135, 100, 94, 11, 150, 47, 120, 70, 130, 42, 45, 103, 117, 99, 112, 167, 58, 77
Offset: 1
Keywords
Comments
Links
Crossrefs
Formula
a(1) = 1; if A000035(n) = 1 and A010051(n) = 1 [i.e., when n is an odd prime], then a(n) = A000040(a(A000720(n)-1)), otherwise a(n) = A002808(a(A062298(n))). [Here A062298(n) gives the index of n among numbers larger than 1 which are not odd primes, 1 for 2, 2 for 4, 3 for 6, etc.]
As a composition of other permutations:
A257801 Permutation of natural numbers: a(1)=1; a(oddprime(n)) = lucky(1+a(n)), a(not_an_oddprime(n)) = unlucky(a(n-1)).
1, 2, 3, 4, 7, 5, 9, 6, 11, 8, 13, 14, 25, 10, 17, 12, 15, 19, 33, 20, 35, 16, 21, 24, 18, 22, 27, 45, 43, 28, 31, 47, 23, 29, 34, 26, 51, 30, 38, 59, 63, 57, 115, 39, 42, 61, 37, 32, 40, 46, 36, 66, 73, 41, 52, 78, 83, 76, 49, 146, 67, 53, 56, 81, 50, 44, 79, 54, 60, 48, 163, 86, 87, 95, 55, 68, 101, 107, 171, 98, 64
Offset: 1
Keywords
Comments
Links
Crossrefs
A316434 a(n) = a(pi(n)) + a(n-pi(n)) with a(1) = a(2) = 1.
1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 8, 8, 9, 10, 10, 11, 11, 11, 12, 12, 13, 14, 15, 15, 16, 16, 17, 17, 18, 19, 19, 20, 21, 22, 22, 22, 23, 23, 24, 25, 25, 25, 26, 27, 28, 28, 29, 30, 31, 31, 32, 32, 33, 33, 34, 35, 35, 35, 36, 36, 37, 38, 39, 39, 39, 40, 41, 42, 42, 42, 43, 44, 44
Offset: 1
Keywords
Comments
This sequence hits every positive integer.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Altug Alkan, A plot of a(n)/n
- Altug Alkan and Orhan Ozgur Aybar, On a Family of Sequences Related to Prime Counting Function, International Journal of Statistics and Probability Vol. 7, No. 6; 2018.
- Rémy Sigrist, C++ program for A316434
Programs
-
Maple
f:= proc(n) option remember: local p; p:= numtheory:-pi(n); procname(p) + procname(n-p) end proc: f(1):= 1: f(2):= 1: map(f, [$1..100]); # Robert Israel, Jul 03 2018
-
Mathematica
a[1]=a[2]=1; a[n_] := a[n] = a[PrimePi[n]] + a[n - PrimePi[n]]; Array[a, 75] (* Giovanni Resta, Nov 02 2018 *)
-
PARI
q=vector(75); for(n=1, 2, q[n] = 1); for(n=3, #q, q[n] = q[primepi(n)] + q[n-primepi(n)]); q (C++) See Links section.
-
Python
from sympy import primepi def A316434(n): pp = primepi(n) return 1 if n == 1 or n == 2 else A316434(pp) + A316434(n-pp) # Chai Wah Wu, Nov 02 2018
A025003 a(1) = 2; a(n+1) = a(n)-th nonprime, where nonprimes begin at 1.
2, 4, 8, 14, 22, 33, 48, 66, 90, 120, 156, 202, 256, 322, 400, 494, 604, 734, 888, 1067, 1272, 1512, 1790, 2107, 2472, 2890, 3364, 3903, 4515, 5207, 5990, 6875, 7868, 8984, 10238, 11637, 13207, 14959, 16909, 19075, 21483, 24173, 27149, 30436, 34080, 38103
Offset: 1
Keywords
Comments
Index of first occurrence of n in A090532.
Let b(n) (n >= 0) be the smallest integer k >= 1 that takes n steps to reach 1 iterating the map f: k -> k - pi(k). The sequence {b(n), n >= 0} begins 1, 2, 4, 8, 14, 22, 33, 48, 66, 90, 120, 156, ... and agrees with the present sequence except for b(0). - Ya-Ping Lu, Sep 07 2020
Examples
From _Ya-Ping Lu_, Sep 07 2020: (Start) a(1) = 2 because f(2) = 2 - pi(2) = 1 and m(2) = 1; For the integer 3, since f(3) = 1. m(3) = 1, which is not bigger than m(1) or m(2). So, 3 is not a term in the sequence; a(2) = 4 because f^2(4) = f(2) = 1 and m(4) = 2; a(3) = 8 because f^3(8) = f^2(4) = 1 and m(8) = 3. (End)
Programs
-
Maple
N:= 50: # to get a(0)..a(N) V:= Array(0..N): V[0]:= 1: V[1]:= 2: m:= 2: p:= 3: g:= 1: n:= 1: do if g+p-m-1 >= V[n] then m:= V[n]+m-g; n:= n+1; V[n]:= m; if n = N then break fi; g:= V[n-1]; else g:= g+p-m; m:= p+1; p:= nextprime(m); fi; od; convert(V, list); # Robert Israel, Sep 08 2020
-
Python
from sympy import prime, primepi n_last = 0 pi_last = 0 ct_max = -1 for n in range(1, 100001): ct = 0 pi = pi_last + primepi(n) - primepi(n_last) n_c = n pi_c = pi while n_c > 1: nc -= pi_c ct += 1 pi_c -= primepi(n_c + pi_c) - primepi(n_c) if ct > ct_max: print(n) ct_max = ct n_last = n pi_last = pi # Ya-Ping Lu, Sep 07 2020
Formula
a(n) = min(k: f^n(k) = 1), where f = A062298 and n-fold iteration of f is denoted by f^n. - Ya-Ping Lu, Sep 07 2020
A161865 Numerators of ratio of nonprimes in a square interval to that of nonprimes in that interval and its successor.
1, 3, 5, 2, 1, 3, 12, 13, 1, 16, 19, 10, 22, 1, 25, 13, 30, 31, 33, 17, 18, 38, 41, 40, 43, 46, 47, 16, 51, 1, 53, 56, 19, 60, 61, 32, 66, 65, 68, 23, 18, 76, 25, 1, 78, 83, 1, 82, 89, 45, 88, 89, 95, 24, 100, 101, 49, 104, 103, 21, 55, 27, 112, 1, 115, 59, 1, 20, 21, 15, 64, 1
Offset: 1
Examples
First few terms are 1/4, 3/8, 5/11, 2/5, 1/2, 3/7, 12/25, 13/29. For n=1: there is 1 nonprime <= 1, 2 nonprimes <= 4, and 5 nonprimes <= 9. The ratio is (2 - 1)/(5 - 1) = 1/4.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A062298 := proc(n) n-numtheory[pi](n) ; end: A078435 := proc(n) A062298(n^2) ; end: A161865 := proc(n) r := [ A078435(n),A078435(n+1),A078435(n+2)] ; (r[2]-r[1])/(r[3]-r[1]) ; numer(%) ; end: seq(A161865(n),n=1..120) ; # R. J. Mathar, Sep 27 2009
-
Mathematica
Numerator[Table[((2 n + 1) - (PrimePi[(n + 1)^2] - PrimePi[n^2]))/((4 n + 4) - (PrimePi[(n + 2)^2] - PrimePi[n^2])), {n, 1, 40}]] (* corrected by G. C. Greubel, Dec 20 2016 *)
Formula
The limit of this sequence is 1/2, as can be shown by setting an increasing lower bound on the ratio of composites in successive square intervals.
Extensions
Extended beyond a(8) by R. J. Mathar, Sep 27 2009
A255573 a(n) = Number of terms of A205783 (including 1) in range 0 .. n.
0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 6, 7, 7, 8, 9, 10, 10, 11, 11, 12, 13, 14, 14, 15, 15, 16, 17, 18, 18, 19, 19, 20, 21, 22, 23, 24, 24, 25, 26, 27, 27, 28, 28, 29, 30, 31, 31, 32, 33, 34, 35, 36, 36, 37, 37, 38, 39, 40, 40, 41, 41, 42, 43, 44, 45, 46, 46, 47, 47, 48, 48, 49, 49, 50, 51, 52, 52
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..8192
Comments
Examples
Links
Crossrefs
Programs
Haskell
Mathematica