cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A279254 Positive integers that have a record number of divisors in Gaussian integers.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 20, 30, 40, 60, 100, 120, 180, 200, 240, 260, 300, 390, 520, 600, 780, 1200, 1300, 1560, 2340, 2600, 3120, 3900, 6630, 7800, 11700, 13260, 15600, 22100, 23400, 26520, 39780, 44200, 53040, 66300, 132600, 198900, 265200, 397800, 530400, 663000, 795600, 928200
Offset: 1

Views

Author

J. Lowell, Dec 08 2016

Keywords

Comments

Indices of records in A062327.

Crossrefs

Subsequence of A097752.
Cf. A062327, A002182 (factorization over the integers).

Programs

  • Mathematica
    With[{s = Array[DivisorSigma[0, #, GaussianIntegers -> True] &, 10^6]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Apr 05 2018 *)
  • PARI
    b(n)= \\ A062327
    {
        my(r=1,f=factor(n));
        for(j=1,#f[,1], my(p=f[j,1],e=f[j,2]);
            if(p==2,r*=(2*e+1));
            if(p%4==1,r*=(e+1)^2);
            if(p%4==3,r*=(e+1));
        );
        return(r);
    }
    { my(r=0,t); for(n=1,10^6, t=b(n); if(t>r,r=t;print1(n,", "))); }
    \\ Joerg Arndt, Dec 09 2016

Extensions

Terms a(11) and beyond from Joerg Arndt, Dec 09 2016

A332313 Numbers k such that k, k + 1 and k + 2 have the same number of divisors in Gaussian integers.

Original entry on oeis.org

23824, 38574, 52974, 62224, 71406, 105424, 110574, 191824, 201616, 209424, 240174, 249775, 282896, 285102, 297774, 326574, 340974, 375824, 393424, 407824, 440656, 451024, 496174, 509776, 553774, 587536, 599632, 600174, 606032, 623824, 628974, 631376, 667024, 672174
Offset: 1

Views

Author

Amiram Eldar, Feb 09 2020

Keywords

Examples

			23824 is a term since 23824, 23825 and 23826 each have 36 divisors in Gaussian integers.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Position[Partition[DivisorSigma[0, Range[3*10^5], GaussianIntegers -> True], 3, 1], {x_, x_, x_}]] (* after Harvey P. Dale at A005238 *)

A062711 Number of prime Gaussian integers z=a+bi with |z|<=n.

Original entry on oeis.org

0, 1, 4, 6, 8, 10, 15, 19, 21, 25, 32, 34, 38, 44, 46, 52, 60, 66, 73, 79, 87, 93, 98, 104, 114, 122, 128, 138, 146, 154, 163, 173, 181, 193, 203, 213, 221, 231, 239, 245, 259, 273, 280, 294, 304, 316, 327, 343, 359, 369
Offset: 1

Views

Author

Reiner Martin, Jul 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    m = 50;
    t = Table[x + y I, {x, -m, m}, {y, -m, m}] // Flatten[#, 1]& // Select[#, PrimeQ[#, GaussianIntegers -> True]& ]& // Sort // DeleteDuplicates[#, Abs[#1] == Abs[#2] && MatchQ[#1 /#2 , 1|-1|I|-I]& ]&;
    a[n_] := Select[t, Abs[#] <= n&] // Length;
    Array[a, m] (* Jean-François Alcover, Jul 29 2016 *)

Formula

Two prime Gaussian integers are not counted separately if they are associated, i.e. if their quotient is a unit (1, i, -1 or -i).
Similar to the ordinary prime number theorem (see A000720) we have the asymptotic expression: a(n) ~ n^2/(2 * log(n)) - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 16 2001
a(1)=0, a(n)=1+A066339(n^2)+A066490(n) for n>0. - T. D. Noe, Feb 20 2007

A332312 Numbers k such that k and k + 1 have the same number of divisors in Gaussian integers.

Original entry on oeis.org

62, 153, 175, 206, 278, 404, 422, 494, 657, 774, 801, 833, 854, 873, 891, 926, 1017, 1070, 1126, 1142, 1233, 1322, 1424, 1502, 1617, 1718, 1737, 1881, 1910, 1953, 2097, 2222, 2302, 2673, 2694, 2793, 2798, 2817, 2825, 2961, 2996, 3014, 3174, 3177, 3266, 3446, 3577
Offset: 1

Views

Author

Amiram Eldar, Feb 09 2020

Keywords

Examples

			62 is a term since both 62 and 63 have 6 divisors in Gaussian integers.
		

Crossrefs

Programs

  • Mathematica
    SequencePosition[DivisorSigma[0, Range[3500], GaussianIntegers -> True], {x_, x_}][[All, 1]] (* after Harvey P. Dale at A005237 *)

A332314 Numbers k such that k, k + 1, k + 2 and k + 3 have the same number of divisors in Gaussian integers.

Original entry on oeis.org

263449773, 334047725, 760228973, 862305773, 1965540624, 2136055725, 2362380525, 2477365422, 2515570575, 2613782223, 2939626925, 3181603023, 3814526223, 3987335022, 4610697039, 4771214574, 4981539822, 5018728272, 5035157775, 5186567824, 6189727725, 6329159823, 6569396973
Offset: 1

Views

Author

Amiram Eldar, Feb 09 2020

Keywords

Examples

			263449773 is a term since 263449773, 263449774, 263449775 and 263449776 each have 72 divisors in Gaussian integers.
		

Crossrefs

Programs

  • Mathematica
    gaussNumDiv[n_] := DivisorSigma[0, n, GaussianIntegers -> True]; m = 4; s = gaussNumDiv /@ Range[m]; seq = {}; n = m + 1; While[Length[seq] < 10, If[Length @ Union[s] == 1, AppendTo[seq, n - m + 1]]; n++; s = Join[Rest[s], {gaussNumDiv[n]}]]; seq

A332476 The number of unitary divisors of n in Gaussian integers.

Original entry on oeis.org

1, 2, 2, 2, 4, 4, 2, 2, 2, 8, 2, 4, 4, 4, 8, 2, 4, 4, 2, 8, 4, 4, 2, 4, 4, 8, 2, 4, 4, 16, 2, 2, 4, 8, 8, 4, 4, 4, 8, 8, 4, 8, 2, 4, 8, 4, 2, 4, 2, 8, 8, 8, 4, 4, 8, 4, 4, 8, 2, 16, 4, 4, 4, 2, 16, 8, 2, 8, 4, 16, 2, 4, 4, 8, 8, 4, 4, 16, 2, 8, 2, 8, 2, 8, 16
Offset: 1

Views

Author

Amiram Eldar, Feb 13 2020

Keywords

Examples

			a(2) = 2 since 2 = -i * (1 + i)^2, so it has 2 unitary divisors (up to associates): 1 and (1 + i)^2.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[Abs[p] == 1, 1, 2]; a[n_] := Times @@ f @@@ FactorInteger[n, GaussianIntegers -> True]; Array[a, 100]

Formula

Multiplicative with a(p^e) = 4 if p == 1 (mod 4) and 2 otherwise.
a(n) = 2^A086275(n).

A335852 Product of the exponents in the prime factorization of n in the ring of Gaussian integers.

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 1, 6, 2, 2, 1, 4, 1, 2, 1, 8, 1, 4, 1, 4, 1, 2, 1, 6, 4, 2, 3, 4, 1, 2, 1, 10, 1, 2, 1, 8, 1, 2, 1, 6, 1, 2, 1, 4, 2, 2, 1, 8, 2, 8, 1, 4, 1, 6, 1, 6, 1, 2, 1, 4, 1, 2, 2, 12, 1, 2, 1, 4, 1, 2, 1, 12, 1, 2, 4, 4, 1, 2, 1, 8, 4, 2, 1, 4, 1, 2
Offset: 1

Views

Author

Amiram Eldar, Jun 26 2020

Keywords

Comments

a(n) is also the number of divisors of n in Gaussian integers that are powerful (A335851).

Examples

			a(2) = 2 since 2 = -i * (1 + i)^2 and the Gaussian prime (1 + i) has an exponent 2.
a(100) = 16 since 100 = (1 + i)^4 * (1 + 2*i)^2 * (2 + i)^2 and 4*2*2 = 16.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ FactorInteger[n, GaussianIntegers -> True][[All, 2]]; Array[a, 100]
  • PARI
    a(n) = my (f = factor(n*I)); f[1,1] /= I; prod(k=1, #f~, f[k,2]); \\ Michel Marcus, Jun 28 2020

Formula

Multiplicative with a(p^e) = 2*e if p = 2, e if p == 3 (mod 4) and e^2 if p == 1 (mod 4).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (5/2) * Product_{p prime == 3 (mod 4)} (p^2 - p + 1)/(p*(p-1)) * Product_{p prime == 3 (mod 1)} (p^4 - 3*p^3 + 6*p^2 - 5*p + 1)/(p*(p-1)^3) = 3.73805905189... . - Amiram Eldar, Oct 15 2022

A351851 Numbers that are divisible by the number of their divisors over the Gaussian integers.

Original entry on oeis.org

1, 6, 9, 18, 20, 56, 126, 168, 180, 198, 280, 342, 352, 414, 432, 441, 486, 504, 558, 616, 625, 728, 774, 832, 846, 952, 1056, 1062, 1064, 1089, 1176, 1206, 1278, 1288, 1422, 1494, 1512, 1624, 1736, 1760, 1848, 1854, 1920, 1926, 2025, 2072, 2160, 2286, 2296, 2358
Offset: 1

Views

Author

Amiram Eldar, Feb 22 2022

Keywords

Comments

Numbers k such that A062327(k) | k.
All the odd terms are squares.

Examples

			6 is a term since it is divisible by A062327(6) = 6.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2400], Divisible[#, DivisorSigma[0, #, GaussianIntegers -> True]] &]

A302249 a(n) is the number of divisors of A279254(n) in Gaussian integers.

Original entry on oeis.org

1, 3, 5, 6, 7, 12, 20, 24, 28, 40, 45, 56, 60, 63, 72, 80, 90, 96, 112, 126, 160, 162, 180, 224, 240, 252, 288, 360, 384, 504, 540, 640, 648, 720, 756, 896, 960, 1008, 1152, 1440, 2016, 2160, 2592, 3024, 3168, 3584, 3888, 4032
Offset: 1

Views

Author

Jianing Song, Apr 04 2018

Keywords

Comments

The divisors are counted mod associates.
Conjecture: a(14) = 63 is the largest odd term.

Examples

			A279254(14) = 200 and 200 has 63 divisors in Gaussian integers (up to association), so a(14) = 63.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Array[DivisorSigma[0, #, GaussianIntegers -> True] &, 10^6]}, Union@ FoldList[Max, s]] (* Michael De Vlieger, Apr 05 2018 *)
  • PARI
    b(n)= \\ A062327
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2, r*=(2*e+1));
            if(p%4==1, r*=(e+1)^2);
            if(p%4==3, r*=(e+1));
        );
        return(r);
    }
    { my(r=0, t); for(n=1, 10^6, t=b(n); if(t>r, r=t; print1(t, ", "))); }
    \\ Joerg Arndt, Apr 04 2018

Formula

a(n) = A062327(A279254(n)).

A302252 Smallest number with exactly n divisors in Gaussian integers.

Original entry on oeis.org

1, 3, 2, 5, 4, 6, 8, 15, 16, 12, 32, 10, 64, 24, 36, 65, 256, 48, 512, 20, 72, 96, 2048, 30, 324, 192, 50, 40, 16384, 252, 32768, 195, 288, 768, 648, 80, 262144, 1536, 576, 60, 1048576, 504, 2097152, 160, 100, 6144, 8388608, 130, 5832, 1875, 2304, 320
Offset: 1

Views

Author

Jianing Song, Apr 04 2018

Keywords

Comments

The divisors are counted up to association.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n > 2 && PrimeQ[n], 2^((n-1)/2), Block[{k=1}, While[ DivisorSigma[0, k, GaussianIntegers -> True] != n, k++]; k]]; Array[a, 52] (* Giovanni Resta, Apr 04 2018 *)
  • PARI
    nbd(n) = {my(r=1, f=factor(n)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); if(p==2, r*=(2*e+1)); if(p%4==1, r*=(e+1)^2); if(p%4==3, r*=(e+1));); return(r);}  \\ A062327
    a(n) = {my(k=1); while (nbd(k) != n, k++); k;} \\ Michel Marcus, Apr 26 2018

Formula

For prime p > 2, a(p) = 2^((p-1)/2) = sqrt(A005179(p)).

Extensions

More terms from Giovanni Resta, Apr 04 2018
Previous Showing 11-20 of 22 results. Next