cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A067683 Numbers k such that phi(k)*sigma(k) + 1 is prime.

Original entry on oeis.org

1, 8, 9, 10, 12, 15, 20, 28, 30, 32, 35, 36, 42, 45, 50, 54, 58, 60, 70, 80, 92, 93, 95, 100, 110, 114, 122, 123, 124, 125, 130, 132, 142, 143, 145, 152, 155, 162, 165, 168, 169, 171, 172, 174, 175, 176, 178, 180, 183, 185, 186, 195, 198, 200, 204, 209, 212, 216
Offset: 1

Views

Author

Benoit Cloitre, Feb 04 2002

Keywords

Crossrefs

Cf. A000010 (phi), A000203 (sigma), A062354.

Programs

  • Mathematica
    Select[Range[216], PrimeQ[EulerPhi[#]*DivisorSigma[1, #] + 1] &] (* Amiram Eldar, Apr 20 2025 *)
  • PARI
    isok(k) = {my(f = factor(k)); isprime(eulerphi(k) * sigma(k) + 1);} \\ Amiram Eldar, Apr 20 2025

A069546 a(n) = Sum_{d|n} sigma(n*d).

Original entry on oeis.org

1, 10, 17, 53, 37, 170, 65, 236, 174, 370, 145, 901, 197, 650, 629, 987, 325, 1740, 401, 1961, 1105, 1450, 577, 4012, 968, 1970, 1618, 3445, 901, 6290, 1025, 4026, 2465, 3250, 2405, 9222, 1445, 4010, 3349, 8732, 1765, 11050, 1937, 7685, 6438, 5770
Offset: 1

Views

Author

Vladeta Jovovic, Apr 17 2002

Keywords

Crossrefs

Programs

  • Magma
    [&+[DivisorSigma(1,n*d):d in Divisors(n)]:n in [1..50]]; // Marius A. Burtea, Sep 15 2019
    
  • Mathematica
    Table[ Apply[ Plus, DivisorSigma[1, n*Divisors[n]]], {n, 1, 50}]
    f[p_, e_] := (p^(e + 1)*(p^(e + 1) - 1) - (p - 1)*(e + 1))/(p - 1)^2; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 28 2022 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(n*d)); \\ Michel Marcus, Sep 15 2019

Formula

Multiplicative with a(p^e) = (p^(e+1)*(p^(e+1)-1)-(p-1)*(e+1))/(p-1)^2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = ((zeta(2)*zeta(3)^2)/3) * Product_{p prime} (1 + 1/p^2 - 1/p^4 - 1/p^5) = 1.09461730308... . - Amiram Eldar, Oct 28 2022

Extensions

Edited and extended by Robert G. Wilson v, Apr 22 2002

A070943 Commuting elements: number of ordered pairs g, h in the group GL(2,Z_n) such that gh = hg.

Original entry on oeis.org

1, 18, 384, 1344, 11520, 6912, 96768, 92160, 303264, 207360, 1584000, 516096, 4402944, 1741824, 4423680, 6094848, 22560768, 5458752, 44323200, 15482880, 37158912, 28512000, 141064704, 35389440, 186000000, 79252992, 226748160, 130056192, 572947200, 79626240
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 12 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n^4*DivisorSigma[1, n]*EulerPhi[n]*Product[(1-1/p^2)*(1-1/p), {p, FactorInteger[n][[All, 1]]}]; a[1]=1; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, May 02 2013, after Eric M. Schmidt *)
  • Sage
    def A070943(n) : return Integer(n^4 * sigma(n) * euler_phi(n) * prod((1-1/p^2)*(1-1/p) for (p,m) in factor(n))) # Eric M. Schmidt, May 02 2013

Formula

a(n) = A000252(n) * A062354(n).
a(n) = n^4 * Product_{p prime, p|n} (1-1/p^2)*(1-1/p) * sigma(n)*phi(n).
From Amiram Eldar, Oct 30 2022: (Start)
Multiplicative with a(p^e) = (p^(e+1)-1) * (p-1)^2 * (p+1) * p^(5*e-4).
Sum_{k=1..n} a(k) ~ c * n^7, where c = (1/7) * Product_{p prime} (1 - 1/p^2 - 2/p^3 + 3/p^4 - 1/p^5) = 0.07103214283... . (End)

Extensions

More terms from Benoit Cloitre, Sep 13 2003
More terms from Eric M. Schmidt, May 02 2013

A085646 Sum of the entries in the character table of the group GL(2,Z_n).

Original entry on oeis.org

1, 5, 24, 52, 120, 120, 336, 496, 654, 600, 1320, 1248, 2184, 1680, 2880
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 11 2003

Keywords

Crossrefs

Formula

For an odd prime p : a(p) = p*(p^2-1).

A115911 Numbers k such that phi(k)*sigma(k) is a triangular number.

Original entry on oeis.org

1, 2, 9, 11, 23, 118, 373, 556, 1332, 2420, 3081, 5251, 7642, 12671, 116836, 127627, 135861, 172676, 198912, 365408, 421902, 426710, 901273, 921736, 954068, 1001396, 1003333, 1006567, 1077452, 1161754, 1162514, 1364225, 1632361
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			phi(1003333)*sigma(1003333) = 1003888529280 = T(1416960).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^4], IntegerQ @ Sqrt[8 * EulerPhi[#] * DivisorSigma[1, #] + 1] &] (* Amiram Eldar, Sep 16 2019 *)
  • PARI
    isok(n) = ispolygonal(eulerphi(n)*sigma(n), 3); \\ Michel Marcus, Jan 09 2014

A271182 a(n) = prime(n)^(2*n) - prime(n)^(n-1).

Original entry on oeis.org

3, 78, 15600, 5764458, 25937409960, 23298084751188, 168377826535263360, 288441413566727295942, 3244150909895169974315088, 176994576151109738690640664532, 645590698195138072217104753157760, 43335257111193343900187118461545288548
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 07 2016

Keywords

Crossrefs

Programs

  • Magma
    [NthPrime(n)^(2*n)-NthPrime(n)^(n-1) : n in [1..12]];
    
  • Maple
    A271182:=n->ithprime(n)^(2*n)-ithprime(n)^(n-1): seq(A271182(n), n=1..15);
  • Mathematica
    Table[Prime[n]^(2*n) - Prime[n]^(n - 1), {n, 12}]
  • PARI
    a(n) = prime(n)^(2*n) - prime(n)^(n-1); \\ Altug Alkan, Apr 07 2016

Formula

a(n) = sigma(prime(n)^n) * phi(prime(n)^n) = A062354(A062457(n)).

A309153 a(n) = A000203(n)*A001227(n).

Original entry on oeis.org

1, 3, 8, 7, 12, 24, 16, 15, 39, 36, 24, 56, 28, 48, 96, 31, 36, 117, 40, 84, 128, 72, 48, 120, 93, 84, 160, 112, 60, 288, 64, 63, 192, 108, 192, 273, 76, 120, 224, 180, 84, 384, 88, 168, 468, 144, 96, 248, 171, 279, 288, 196, 108, 480, 288, 240, 320, 180, 120, 672, 124, 192, 624, 127, 336, 576, 136, 252, 384
Offset: 1

Views

Author

Omar E. Pol, Jul 14 2019

Keywords

Comments

A001227(n) is denoted by Delta_0(n) in Glaisher 1907.
a(n) = A000203(n) iff n is a power of 2.

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, 1 &, OddQ] DivisorSigma[1, #] &, 69] (* Michael De Vlieger, Nov 22 2019 *)
    f[p_, e_] := (e+1)*(p^(e+1)-1)/(p-1); f[2, e_] := 2^(e+1) - 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 01 2022 *)

Formula

a(n) = sigma(n)*delta(n).
Multiplicative with a(2^e) = 2^(e+1) - 1 and a(p^e) = (e+1)*(p^(e+1)-1)/(p-1) for p > 2. - Amiram Eldar, Nov 01 2022
From Amiram Eldar, Dec 04 2023: (Start)
Dirichlet g.f.: (4^s - 3*2^s + 2)/(4^s - 2) * (zeta(s)*zeta(s-1))^2/zeta(2*s-1).
Sum_{k=1..n} a(k) ~ (Pi^4/(168*zeta(3))) * n^2 * (log(n) + 2*gamma - 1/2 + 22*log(2)/21 + 2*zeta'(2)/zeta(2) - 2*zeta'(3)/zeta(3)), where gamma is Euler's constant (A001620). (End)

A341637 a(n) = Sum_{d|n} phi(d) * sigma(d) * sigma(n/d).

Original entry on oeis.org

1, 6, 12, 30, 30, 72, 56, 138, 123, 180, 132, 360, 182, 336, 360, 602, 306, 738, 380, 900, 672, 792, 552, 1656, 795, 1092, 1176, 1680, 870, 2160, 992, 2538, 1584, 1836, 1680, 3690, 1406, 2280, 2184, 4140, 1722, 4032, 1892, 3960, 3690, 3312, 2256, 7224, 2835, 4770, 3672, 5460
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[d] DivisorSigma[1, d] DivisorSigma[1, n/d], {d, Divisors[n]}], {n, 52}]
    Table[Sum[DivisorSigma[1, GCD[n, k]] DivisorSigma[1, n/GCD[n, k]], {k, n}], {n, 52}]
    f[p_, e_] := (p^(2*e + 3) - (e + 1)*(p^2 - 1)*p^e - p)/((p - 1)^2*(p + 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 12 2022 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*sigma(d)*sigma(n/d)); \\ Michel Marcus, Feb 17 2021

Formula

a(n) = Sum_{k=1..n} sigma(gcd(n,k)) * sigma(n/gcd(n,k)).
From Amiram Eldar, Nov 12 2022: (Start)
Multiplicative with a(p^e) = (p^(2*e+3) - (e+1)*(p^2-1)*p^e - p)/((p-1)^2*(p+1)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)*zeta(3)/3) * Product_{p prime} (1 - 1/(p^2*(p+1))) = (1/3) * A183699 * A330523 = 0.581007... . (End)

A341638 a(n) = Sum_{d|n} phi(d) * sigma(d) * tau(n/d).

Original entry on oeis.org

1, 5, 10, 23, 26, 50, 50, 101, 97, 130, 122, 230, 170, 250, 260, 427, 290, 485, 362, 598, 500, 610, 530, 1010, 671, 850, 904, 1150, 842, 1300, 962, 1761, 1220, 1450, 1300, 2231, 1370, 1810, 1700, 2626, 1682, 2500, 1850, 2806, 2522, 2650, 2210, 4270, 2493, 3355, 2900, 3910, 2810, 4520
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 16 2021

Keywords

Comments

Inverse Moebius transform of A062952.

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[d] DivisorSigma[1, d] DivisorSigma[0, n/d], {d, Divisors[n]}], {n, 54}]
    Table[Sum[DivisorSigma[0, GCD[n, k]] DivisorSigma[1, n/GCD[n, k]], {k, n}], {n, 54}]
    f[p_, e_] := (p^(2*e + 4) - p^(e + 3) - 2*p^(e + 2) - p^(e + 1) + (e + 1)*p^3 - (e - 1)*p + 1)/(p^2 - 1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 26 2023 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*sigma(d)*numdiv(n/d)); \\ Michel Marcus, Feb 17 2021

Formula

a(n) = Sum_{k=1..n} tau(gcd(n,k)) * sigma(n/gcd(n,k)).
a(n) = Sum_{d|n} A062952(d).
a(n) = Sum_{k=1..n} tau(n/gcd(n,k))*sigma(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 09 2021
From Amiram Eldar, Jan 26 2023: (Start)
Multiplicative with a(p^e) = (p^(2*e+4) - p^(e+3) - 2*p^(e+2) - p^(e+1) + (e+1)*p^3 - (e-1)*p + 1)/(p^2-1)^2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)*zeta(3)^2/3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A013661 * A002117^2 * A330523 / 3 = 0.424578... . (End)

A386624 a(n) = Sum_{d|n} sigma(d) * phi(d) * mu(n/d).

Original entry on oeis.org

1, 2, 7, 11, 23, 14, 47, 46, 70, 46, 119, 77, 167, 94, 161, 188, 287, 140, 359, 253, 329, 238, 527, 322, 596, 334, 642, 517, 839, 322, 959, 760, 833, 574, 1081, 770, 1367, 718, 1169, 1058, 1679, 658, 1847, 1309, 1610, 1054, 2207, 1316, 2346, 1192, 2009, 1837, 2807, 1284, 2737, 2162, 2513, 1678, 3479, 1771, 3719, 1918, 3290, 3056, 3841, 1666, 4487, 3157, 3689
Offset: 1

Views

Author

Wesley Ivan Hurt, Jul 27 2025

Keywords

Comments

Möbius transform of sigma(n) * phi(n) = A062354(n).

Crossrefs

Cf. A000010 (phi), A000203 (sigma), A062354, A330523.

Programs

  • Mathematica
    Table[Sum[EulerPhi[d] DivisorSigma[1, d] MoebiusMu[n/d], {d, Divisors[n]}], {n, 100}]
    f[p_, e_] := p^(2*e) - p^(e-1) - If[e > 1, p^(2*e-2) - p^(e-2), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 27 2025 *)
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i, 2];  p^(2*e) - p^(e - 1) - if(e > 1, p^(2*e - 2) - p^(e - 2), 1));} \\ Amiram Eldar, Jul 27 2025

Formula

a(n) = Sum_{d|n} A062354(d) * mu(n/d).
From Amiram Eldar, Jul 27 2025: (Start)
Multiplicative with a(p) = p^2 - 2, and a(p^e) = p^(2*e) - p^(2*e-2) - p^(e-1) + p^(e-2) for e >= 2.
Dirichlet g.f.: (zeta(s-2) * zeta(s-1) / zeta(s)) * Product_{p prime} (1 - 1/p^(s-1) - 1/p^s + 1/p^(2*s-2)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)/(3*zeta(3))) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A330523*zeta(2)/(3*zeta(3)) = 0.24444595409976589792... . (End)
Previous Showing 31-40 of 43 results. Next