cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A336745 Numbers m that divide the product phi(m) * sigma(m) * tau(m), where phi is the Euler totient function (A000010), sigma is the sum of divisors function (A000203) and tau is the number of divisors function (A000005).

Original entry on oeis.org

1, 2, 6, 8, 9, 12, 18, 24, 28, 32, 36, 40, 54, 72, 80, 84, 96, 108, 117, 120, 128, 135, 144, 162, 196, 200, 216, 224, 234, 240, 243, 252, 270, 288, 324, 360, 384, 400, 405, 448, 468, 486, 496, 512, 540, 576, 588, 600, 625, 640, 648, 672, 675, 720, 756, 768, 775, 810, 819
Offset: 1

Views

Author

Bernard Schott, Aug 02 2020

Keywords

Comments

If s and t are terms with gcd(s, t) = 1, then s*t is another term as phi, sigma and tau are multiplicative functions.
The only prime term is 2 because prime p must divide 2*(p-1)*(p+1) to be a term.

Examples

			For 24, phi(24) = 8, sigma(24) = 60 and tau(24) = 8, then 8*60*8 / 24 = 160, hence 24 is a term.
		

Crossrefs

Subsequences: A000396 (perfect numbers), A005820 (tri-perfect), A027687 (4-perfect), A046060 (5-multiperfect), A046061 (6-multiperfect), A007691 (multiply-perfect numbers), A336715 (m divides phi(m)*tau(m)), A004171, A005010.

Programs

  • Maple
    with(numtheory):
    filter:= m -> irem(tau(m)*phi(m)*sigma(m), m) =0:
    select(filter,[$1..850]);
  • Mathematica
    Select[Range[1000], Divisible[Times @@ DivisorSigma[{0, 1}, #] * EulerPhi[#], #] &] (* Amiram Eldar, Aug 02 2020 *)
  • PARI
    isok(m) = !(eulerphi(m)*sigma(m)*numdiv(m) % m); \\ Michel Marcus, Aug 05 2020

A062816 a(n) = phi(n)*tau(n) - 2n = A000010(n)*A000005(n) - 2*n.

Original entry on oeis.org

-1, -2, -2, -2, -2, -4, -2, 0, 0, -4, -2, 0, -2, -4, 2, 8, -2, 0, -2, 8, 6, -4, -2, 16, 10, -4, 18, 16, -2, 4, -2, 32, 14, -4, 26, 36, -2, -4, 18, 48, -2, 12, -2, 32, 54, -4, -2, 64, 28, 20, 26, 40, -2, 36, 50, 80, 30, -4, -2, 72, -2, -4, 90, 96, 62, 28, -2, 56, 38, 52, -2, 144, -2, -4, 90, 64, 86, 36, -2, 160, 108, -4, -2, 120, 86, -4
Offset: 1

Views

Author

Labos Elemer, Jul 20 2001

Keywords

Comments

It can be shown that phi(n)*tau(n) >= n, which means that quotient = n/tau(n) <= phi(n); note: a(n)+5 is positive.
The value is always positive except when a(n) = 0 for {8,9,12}; or a(n) = -2 for primes together with 4 (i.e., for A046022 but without 1); or a(n) = -4 for A001747 (without 2 and 4); or a(n) = -1 for n = 1.

Crossrefs

Programs

  • Mathematica
    Table[EulerPhi[n]DivisorSigma[0,n]-2n,{n,90}] (* Harvey P. Dale, Feb 03 2021 *)
  • PARI
    a(n)={eulerphi(n)*numdiv(n) - 2*n} \\ Harry J. Smith, Aug 11 2009

Formula

a(n) = A062355(n) - 2*n. - Amiram Eldar, Jul 10 2024

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Aug 11 2009

A094181 a(n) = (n - tau(n))*(n - phi(n)), where tau=A000005 and phi=A000010.

Original entry on oeis.org

0, 0, 1, 2, 3, 8, 5, 16, 18, 36, 9, 48, 11, 80, 77, 88, 15, 144, 17, 168, 153, 216, 21, 256, 110, 308, 207, 352, 27, 484, 29, 416, 377, 540, 341, 648, 35, 680, 525, 768, 39, 1020, 41, 912, 819, 1008, 45, 1216, 322, 1320, 893, 1288, 51, 1656, 765, 1536, 1113, 1620
Offset: 1

Views

Author

Reinhard Zumkeller, May 06 2004

Keywords

Crossrefs

Cf. A062355.

Programs

  • Magma
    [(n-NumberOfDivisors(n))*(n-EulerPhi(n)): n in [1..60]]; // Vincenzo Librandi, Aug 31 2018
  • Mathematica
    Array[(#-DivisorSigma[0,#])(#-EulerPhi[#])&,60] (* Harvey P. Dale, May 18 2012 *)

Formula

a(n) = A049820(n)*A051953(n).

A110601 a(n) = phi(n)*tau(n)^2, where phi is Euler's totient function and tau(n) is the number of divisors of n.

Original entry on oeis.org

1, 4, 8, 18, 16, 32, 24, 64, 54, 64, 40, 144, 48, 96, 128, 200, 64, 216, 72, 288, 192, 160, 88, 512, 180, 192, 288, 432, 112, 512, 120, 576, 320, 256, 384, 972, 144, 288, 384, 1024, 160, 768, 168, 720, 864, 352, 184, 1600, 378, 720, 512, 864, 208, 1152, 640
Offset: 1

Views

Author

Emeric Deutsch, Jul 29 2005

Keywords

Examples

			a(4)=18 because phi(4)=2 and tau(4)=3.
		

Crossrefs

Programs

  • Magma
    [EulerPhi(n)*NumberOfDivisors(n)^2: n in [1..60]]; // Vincenzo Librandi, Jun 21 2017
  • Maple
    with(numtheory): a:=n->phi(n)*tau(n)^2: seq(a(n),n=1..70);
  • Mathematica
    Table[EulerPhi[n]DivisorSigma[0,n]^2,{n,60}] (* Harvey P. Dale, Nov 29 2011 *)
  • PARI
    a(n) = eulerphi(n)*numdiv(n)^2; \\ Michel Marcus, Jun 21 2017
    

Formula

a(n) = A000010(n) * A035116(n) = A062355(n) * A000005(n). - R. J. Mathar, Jul 26 2022
Multiplicative with a(p^e) = (e+1)^2*(p-1)*p^(e-1). - Amiram Eldar, Dec 29 2022

A127528 Triangle T(n,k) read by rows: tau(n)*phi(n/k) if k|n, else 0.

Original entry on oeis.org

1, 2, 2, 4, 0, 2, 6, 3, 0, 3, 8, 0, 0, 0, 2, 8, 8, 4, 0, 0, 4, 12, 0, 0, 0, 0, 0, 2, 16, 8, 0, 4, 0, 0, 0, 4, 18, 0, 6, 0, 0, 0, 0, 0, 3, 16, 16, 0, 0, 4, 0, 0, 0, 0, 4, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 24, 12, 12, 12, 0, 6, 0, 0, 0, 0, 0, 6, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 24, 24
Offset: 1

Views

Author

Gary W. Adamson, Jan 17 2007

Keywords

Examples

			First few rows of the triangle are:
1;
2, 2;
4, 0, 2;
6, 3, 0, 3;
8, 0, 0, 0, 2;
8, 8, 4, 0, 0, 4;
12, 0, 0, 0, 0, 0, 2;
...
		

Crossrefs

Programs

  • Maple
    A127528 := proc(n,k) if n mod k = 0 then numtheory[tau](n)*numtheory[phi](n/k) ; else  0; end if; end proc:
    seq(seq(A127528(n,k),k=1..n),n=1..15) ; # R. J. Mathar, Feb 05 2011

Formula

T(n,k) = A000005(n) * A054523(n,k).
T(n,1) = A062355(n).
T(n,n) = A000005(n).
sum_{k=1..n} T(n,k) = A038040(n).

A244342 a(n) = phi(n)*h(n) where phi() is the Euler totient function, A000010, and h() is A092089.

Original entry on oeis.org

1, 2, 6, 8, 12, 12, 18, 32, 30, 24, 30, 48, 36, 36, 72, 96, 48, 60, 54, 96, 108, 60, 66, 192, 100, 72, 126, 144, 84, 144, 90, 256, 180, 96, 216, 240, 108, 108, 216, 384, 120, 216, 126, 240, 360, 132, 138, 576, 210, 200, 288, 288, 156, 252, 360, 576, 324, 168
Offset: 1

Views

Author

Michel Marcus, Jun 26 2014

Keywords

Comments

a(n) = Sum_{k=1..n} gcd(k^2-1, n) for those k that are coprime to n (see proof in link).
Multiplicative because both A000010 and A092089 are. - Andrew Howroyd, Jul 26 2018

Crossrefs

Programs

  • Maple
    A244342:= proc(n) add(`if`(igcd(k,n)=1,igcd(k^2-1,n),0),k=1..n) end proc;
    seq(A244342(i),i=1..1000); # Robert Israel, Jul 06 2014
  • Mathematica
    h[n_] := Product[{p, e} = pe; Which[OddQ[p], 2 e + 1, p == 2 && e == 1, 2, True, 4 (e - 1)], {pe, FactorInteger[n]}]; h[1] = 1;
    a[n_] := EulerPhi[n] h[n];
    Array[a, 100] (* Jean-François Alcover, Apr 08 2020 *)
  • PARI
    a(n) = sum(j=1, n, gcd(j^2-1,n)*(gcd(j,n)==1));

A318519 a(n) = A000005(n) * A003557(n).

Original entry on oeis.org

1, 2, 2, 6, 2, 4, 2, 16, 9, 4, 2, 12, 2, 4, 4, 40, 2, 18, 2, 12, 4, 4, 2, 32, 15, 4, 36, 12, 2, 8, 2, 96, 4, 4, 4, 54, 2, 4, 4, 32, 2, 8, 2, 12, 18, 4, 2, 80, 21, 30, 4, 12, 2, 72, 4, 32, 4, 4, 2, 24, 2, 4, 18, 224, 4, 8, 2, 12, 4, 8, 2, 144, 2, 4, 30, 12, 4, 8, 2, 80, 135, 4, 2, 24, 4, 4, 4, 32, 2, 36, 4, 12, 4, 4, 4, 192, 2, 42, 18, 90, 2, 8, 2, 32, 8
Offset: 1

Views

Author

Antti Karttunen, Sep 16 2018

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (e + 1)*p^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2023 *)
  • PARI
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); }; \\ From A003557
    A318519(n) = (numdiv(n)*A003557(n));
    
  • PARI
    A318519(n) = { my(f=factor(n)); prod(i=1, #f~, (f[i,2]+1)*(f[i,1]^(f[i,2]-1))); };

Formula

Multiplicative with a(p^e) = (e+1)*(p^(e-1)).
a(n) = A000005(n) * A003557(n).
a(n) = A062355(n) / A173557(n).
Dirichlet g.f.: zeta(s-1)^2 * Product_{p prime} (1 - 2/p^(s-1) + 2/p^s - 1/p^(2*s-1) + 1/p^(2*s-2)). - Amiram Eldar, Sep 14 2023

A333557 a(n) = Sum_{d|n, gcd(d, n/d) = 1} uphi(d) * uphi(n/d), where uphi = unitary totient function (A047994).

Original entry on oeis.org

1, 2, 4, 6, 8, 8, 12, 14, 16, 16, 20, 24, 24, 24, 32, 30, 32, 32, 36, 48, 48, 40, 44, 56, 48, 48, 52, 72, 56, 64, 60, 62, 80, 64, 96, 96, 72, 72, 96, 112, 80, 96, 84, 120, 128, 88, 92, 120, 96, 96, 128, 144, 104, 104, 160, 168, 144, 112, 116, 192, 120, 120, 192, 126, 192, 160, 132, 192, 176, 192
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 26 2020

Keywords

Crossrefs

Programs

  • Mathematica
    uphi[1] = 1; uphi[n_] := Times @@ (#[[1]]^#[[2]] - 1 & /@ FactorInteger[n]); a[n_] := Sum[If[GCD[d, n/d] == 1, uphi[d] uphi[n/d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 70}]
    Table[Sum[If[GCD[d, n/d] == 1, (-2)^PrimeNu[n/d] 2^PrimeNu[d] d, 0], {d, Divisors[n]}], {n, 1, 70}]
    f[p_, e_] := 2*(p^e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 30 2023 *)
  • PARI
    a(n) = sumdiv(n, d, if (gcd(d, n/d) == 1, (-2)^omega(n/d)*2^omega(d)*d)); \\ Michel Marcus, Mar 27 2020

Formula

If n = Product (p_j^k_j) then a(n) = Product (2 * (p_j^k_j - 1)).
a(n) = 2^omega(n) * uphi(n).
a(n) = Sum_{d|n, gcd(d, n/d) = 1} (-2)^omega(n/d) * 2^omega(d) * d.
a(n) = Sum_{d|n, gcd(d, n/d) = 1} (-1)^omega(n/d) * A145388(d).

A336715 Numbers m that divide the product phi(m) * tau(m), where tau is the number of divisors function (A000005) and phi is the Euler totient function (A000010).

Original entry on oeis.org

1, 2, 8, 9, 12, 18, 32, 36, 72, 80, 96, 108, 128, 144, 243, 288, 324, 400, 448, 486, 512, 576, 625, 720, 768, 864, 972, 1152, 1200, 1250, 1344, 1620, 1944, 2000, 2025, 2048, 2304, 2500, 2560, 2592, 2916, 3136, 3600, 3888, 4032, 4050, 4608, 5000, 5103, 5625, 6144, 6561, 6912
Offset: 1

Views

Author

Bernard Schott, Aug 01 2020

Keywords

Comments

Numbers of the form q = 2^(2k+1) with k>=0 (A004171) form a subsequence because tau(q) * phi(q) / q = k + 1.
Numbers of the form q = 9 * 2^k with k>=0 (A005010) form another subsequence because tau(q) * phi(q) / q = k+1 (also).

Examples

			For 80, phi(80) = 32, tau(80) = 10 and tau(80)*phi(80)/80 = 4, hence 80 is a term.
		

Crossrefs

Cf. A000010 (phi), A000005 (tau), A062355.
Subsequences: A004171, A005010.

Programs

  • Maple
    with(numtheory):
    filter:= m-> irem(phi(m)*tau(m), m)=0:
    select(filter, [$1..7000])[];
  • Mathematica
    Select[Range[7000], Divisible[DivisorSigma[0, #] * EulerPhi[#], #] &] (* Amiram Eldar, Aug 01 2020 *)
  • PARI
    isok(m) = (eulerphi(m)*numdiv(m) % m) == 0; \\ Michel Marcus, Aug 02 2020

A348061 a(n) = Sum_{k=1..n, gcd(n,k) = 1} n / gcd(n,k-1).

Original entry on oeis.org

1, 1, 4, 3, 16, 4, 36, 11, 34, 16, 100, 12, 144, 36, 64, 43, 256, 34, 324, 48, 144, 100, 484, 44, 396, 144, 304, 108, 784, 64, 900, 171, 400, 256, 576, 102, 1296, 324, 576, 176, 1600, 144, 1764, 300, 544, 484, 2116, 172, 1758, 396, 1024, 432, 2704, 304, 1600, 396, 1296, 784, 3364, 192
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 26 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[If[GCD[n, k] == 1, n/GCD[n, k - 1], 0], {k, n}], {n, 60}]
    f[p_, e_] := (p^(2 e + 1) - (p + 1) p^(2 e - 1) + 1)/(p + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60]
  • PARI
    a(n) = sum(k=1, n, if (gcd(n, k)==1, n/gcd(n, k-1))); \\ Michel Marcus, Sep 27 2021

Formula

Multiplicative with a(p^e) = (p^(2*e+1) - (p + 1) * p^(2*e-1) + 1) / (p + 1).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} (1 - 1/p^2 - 1/(1 + p + p^2)) = 0.1381393084... . - Amiram Eldar, Nov 18 2022
Previous Showing 11-20 of 27 results. Next