cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 62 results. Next

A320966 Powerful numbers A001694 divisible by a cube > 1.

Original entry on oeis.org

8, 16, 27, 32, 64, 72, 81, 108, 125, 128, 144, 200, 216, 243, 256, 288, 324, 343, 392, 400, 432, 500, 512, 576, 625, 648, 675, 729, 784, 800, 864, 968, 972, 1000, 1024, 1125, 1152, 1296, 1323, 1331, 1352, 1372, 1568, 1600, 1728, 1800, 1936, 1944, 2000, 2025, 2048, 2187, 2197, 2304, 2312, 2401, 2500
Offset: 1

Views

Author

Hugo Pfoertner, Oct 25 2018

Keywords

Comments

Powerful numbers that are not squares of squarefree numbers. - Amiram Eldar, Jun 25 2022

Crossrefs

Intersection of A001694 and A046099.

Programs

  • Mathematica
    Select[Range[2500], (m = MinMax[FactorInteger[#][[;; , 2]]])[[1]] > 1 && m[[2]] > 2 &] (* Amiram Eldar, Jun 25 2022 *)
  • PARI
    isA001694(n)=n=factor(n)[, 2]; for(i=1, #n, if(n[i]==1, return(0))); 1 \\ from Charles R Greathouse IV
    isA046099(n)=n=factor(n)[, 2]; for(i=1, #n, if(n[i]>2, return(1)));0
    for (k=1,2500,if(isA001694(k)&&isA046099(k),print1(k,", ")))
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A320966(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x+squarefreepi(isqrt(x))-squarefreepi(integer_nthroot(x,3)[0]), 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        return bisection(f,n,n) # Chai Wah Wu, Sep 15 2024

Formula

Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - 15/Pi^2 = 0.4237786821... . - Amiram Eldar, Jun 25 2022

A338325 Biquadratefree powerful numbers: numbers whose exponents in their prime factorization are either 2 or 3.

Original entry on oeis.org

1, 4, 8, 9, 25, 27, 36, 49, 72, 100, 108, 121, 125, 169, 196, 200, 216, 225, 289, 343, 361, 392, 441, 484, 500, 529, 675, 676, 841, 900, 961, 968, 1000, 1089, 1125, 1156, 1225, 1323, 1331, 1352, 1369, 1372, 1444, 1521, 1681, 1764, 1800, 1849, 2116, 2197, 2209
Offset: 1

Views

Author

Amiram Eldar, Oct 22 2020

Keywords

Comments

Equivalently, numbers k such that if a prime p divides k then p^2 divides k but p^4 does not divide k.
Each term has a unique representation as a^2 * b^3, where a and b are coprime squarefree numbers.
Dehkordi (1998) refers to these numbers as "2-full and 4-free numbers".

Examples

			4 = 2^2 is a term since the exponent of its only prime factor is 2.
72 = 2^3 * 3^2 is a terms since the exponents of the primes in its prime factorization are 2 and 3.
		

Crossrefs

Intersection of A001694 and A046100.
Subsequences: A062503, A062838.

Programs

  • Mathematica
    Select[Range[2500], # == 1 || AllTrue[FactorInteger[#][[;; , 2]], MemberQ[{2, 3}, #1] &] &]

Formula

The number of terms not exceeding x is asymptotically (zeta(3/2)/zeta(3)) * J_2(1/2) * x^(1/2) + (zeta(2/3)/zeta(2)) * J_2(1/3) * x^(1/3), where J_2(s) = Product_{p prime} (1 - p^(-4*s) - p^(-5*s) - p^(-6*s) + p^(-7*s) + p^(-8*s)) (Dehkordi, 1998).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/p^2 + 1/p^3) = 1.748932... (A330595).

A366243 Numbers that are products of "Fermi-Dirac primes" (A050376) that are powers of primes with exponents that are not powers of 4.

Original entry on oeis.org

1, 4, 9, 25, 36, 49, 100, 121, 169, 196, 225, 256, 289, 361, 441, 484, 529, 676, 841, 900, 961, 1024, 1089, 1156, 1225, 1369, 1444, 1521, 1681, 1764, 1849, 2116, 2209, 2304, 2601, 2809, 3025, 3249, 3364, 3481, 3721, 3844, 4225, 4356, 4489, 4761, 4900, 5041, 5329
Offset: 1

Views

Author

Amiram Eldar, Oct 05 2023

Keywords

Comments

Equivalently, numbers that are products of "Fermi-Dirac primes" that are powers of primes with exponents that are powers of 2 with odd exponents.
Products of distinct numbers of the form p^(2^(2*k-1)), where p is prime and k >= 1.
Numbers whose prime factorization has exponents that are positive terms of A062880.
Every integer k has a unique representation as a product of 2 numbers: one is in this sequence and the other is in A366242: k = A366245(k) * A366244(k).

Crossrefs

A062503 is a subsequence.

Programs

  • Mathematica
    mdQ[n_] := AllTrue[IntegerDigits[n, 4], # < 2 &]; q[e_] := EvenQ[e] && mdQ[e/2]; Select[Range[6000], # == 1 || AllTrue[FactorInteger[#][[;; , 2]], q] &]
  • PARI
    ismd(n) = {my(d = digits(n, 4)); for(i = 1, #d, if(d[i] > 1, return(0))); 1;}
    is(n) = {my(e = factor(n)[ ,2]); for(i = 1, #e, if(e[i]%2 || !ismd(e[i]/2), return(0))); 1;}

Formula

Sum_{n>=1} 1/a(n) = Product_{k>=0} zeta(2^(2*k+1))/zeta(2^(2*k+2)) = 1.52599127273749217982... (this is the constant c in A366242).

A328400 Smallest number with the same set of distinct prime exponents as n.

Original entry on oeis.org

1, 2, 2, 4, 2, 2, 2, 8, 4, 2, 2, 12, 2, 2, 2, 16, 2, 12, 2, 12, 2, 2, 2, 24, 4, 2, 8, 12, 2, 2, 2, 32, 2, 2, 2, 4, 2, 2, 2, 24, 2, 2, 2, 12, 12, 2, 2, 48, 4, 12, 2, 12, 2, 24, 2, 24, 2, 2, 2, 12, 2, 2, 12, 64, 2, 2, 2, 12, 2, 2, 2, 72, 2, 2, 12, 12, 2, 2, 2, 48, 16, 2, 2, 12, 2, 2, 2, 24, 2, 12, 2, 12, 2, 2, 2, 96, 2, 12, 12, 4, 2, 2, 2, 24, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 15 2019

Keywords

Comments

A variant of A046523 which gives the smallest number with the same prime signature as n. However, in this sequence, if any prime exponent occurs multiple times in n, the extra occurrences are removed and the signature is that of one of the numbers where only distinct values of prime exponents occur (A130091).

Examples

			90 = 2^1 * 3^2 * 5^1 has prime signature (1,1,2). The smallest number with prime signature (1,2) is 12 = 2^2 * 3, thus a(90) = 12.
		

Crossrefs

Cf. A007947, A046523, A181819, A181821, A328401 (rgs-transform).
Cf. A005117 (gives indices of terms <= 2), A062503 (after its initial 1, gives indices of 4's in this sequence).

Programs

  • Mathematica
    Array[Times @@ MapIndexed[Prime[#2[[1]]]^#1 &, Reverse[Flatten[Cases[FactorInteger[#], {p_, k_} :> Table[PrimePi[p], {k}]]]]] &[Times @@ FactorInteger[#][[All, 1]]] &@ If[# == 1, 1, Times @@ Prime@ FactorInteger[#][[All, -1]]] &, 105] (* Michael De Vlieger, Oct 17 2019, after Gus Wiseman at A181821 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A181821(n) = { my(f=factor(n),p=0,m=1); forstep(i=#f~,1,-1,while(f[i,2], f[i,2]--; m *= (p=nextprime(p+1))^primepi(f[i,1]))); (m); };
    A328400(n) = A181821(A007947(A181819(n)));

Formula

a(n) = A181821(A007947(A181819(n))).
For all n, a(n) = a(A046523(n)).

A369938 Numbers whose maximal exponent in their prime factorization is a power of 2.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Amiram Eldar, Feb 06 2024

Keywords

Comments

First differs from its subsequence A138302 \ {1} at n = 378: a(378) = 432 = 2^4 * 3^3 is not a term of A138302.
First differs from A096432, A220218 \ {1}, A335275 \ {1} and A337052 \ {1} at n = 56, and from A270428 \ {1} at n = 113.
Numbers k such that A051903(k) is a power of 2.
The asymptotic density of this sequence is 1/zeta(3) + Sum_{k>=2} (1/zeta(2^k+1) - 1/zeta(2^k)) = 0.87442038669659566330... .

Crossrefs

Programs

  • Mathematica
    pow2Q[n_] := n == 2^IntegerExponent[n, 2];
    Select[Range[2, 100], pow2Q[Max[FactorInteger[#][[;; , 2]]]] &]
    Select[Range[2,80],IntegerQ[Log2[Max[FactorInteger[#][[;;,2]]]]]&] (* Harvey P. Dale, Nov 06 2024 *)
  • PARI
    ispow2(n) = n >> valuation(n, 2) == 1;
    is(n) = n > 1 && ispow2(vecmax(factor(n)[, 2]));

A369939 Numbers whose maximal exponent in their prime factorization is a Fibonacci number.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Amiram Eldar, Feb 06 2024

Keywords

Comments

First differs from its subsequence A115063 at n = 2448. a(2448) = 2592 = 2^5 * 3^4 is not a term of A115063.
First differs from A209061 at n = 62.
Numbers k such that A051903(k) is a Fibonacci number.
The asymptotic density of this sequence is 1/zeta(4) + Sum_{k>=5} (1/zeta(Fibonacci(k)+1) - 1/zeta(Fibonacci(k))) = 0.94462177878047854647... .

Crossrefs

Similar sequences: A368714, A369937, A369938.

Programs

  • Mathematica
    fibQ[n_] := Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}];
    Select[Range[100], fibQ[Max[FactorInteger[#][[;; , 2]]]] &]
  • PARI
    isfib(n) = issquare(5*n^2 - 4) || issquare(5*n^2 + 4);
    is(n) = n == 1 || isfib(vecmax(factor(n)[, 2]));

A352780 Square array A(n,k), n >= 1, k >= 0, read by descending antidiagonals, such that the row product is n and column k contains only (2^k)-th powers of squarefree numbers.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 4, 5, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Apr 02 2022

Keywords

Comments

This is well-defined because positive integers have a unique factorization into powers of nonunit squarefree numbers with distinct exponents that are powers of 2.
Each (infinite) row is the lexicographically earliest with product n and terms that are a (2^k)-th power for all k.
For all k, column k is column k+1 of A060176 conjugated by A225546.

Examples

			The top left corner of the array:
  n/k |   0   1   2   3   4   5   6
------+------------------------------
    1 |   1,  1,  1,  1,  1,  1,  1,
    2 |   2,  1,  1,  1,  1,  1,  1,
    3 |   3,  1,  1,  1,  1,  1,  1,
    4 |   1,  4,  1,  1,  1,  1,  1,
    5 |   5,  1,  1,  1,  1,  1,  1,
    6 |   6,  1,  1,  1,  1,  1,  1,
    7 |   7,  1,  1,  1,  1,  1,  1,
    8 |   2,  4,  1,  1,  1,  1,  1,
    9 |   1,  9,  1,  1,  1,  1,  1,
   10 |  10,  1,  1,  1,  1,  1,  1,
   11 |  11,  1,  1,  1,  1,  1,  1,
   12 |   3,  4,  1,  1,  1,  1,  1,
   13 |  13,  1,  1,  1,  1,  1,  1,
   14 |  14,  1,  1,  1,  1,  1,  1,
   15 |  15,  1,  1,  1,  1,  1,  1,
   16 |   1,  1, 16,  1,  1,  1,  1,
   17 |  17,  1,  1,  1,  1,  1,  1,
   18 |   2,  9,  1,  1,  1,  1,  1,
   19 |  19,  1,  1,  1,  1,  1,  1,
   20 |   5,  4,  1,  1,  1,  1,  1,
		

Crossrefs

Sequences used in a formula defining this sequence: A000188, A007913, A060176, A225546.
Cf. A007913 (column 0), A335324 (column 1).
Range of values: {1} U A340682 (whole table), A005117 (column 0), A062503 (column 1), {1} U A113849 (column 2).
Row numbers of rows:
- with a 1 in column 0: A000290\{0};
- with a 1 in column 1: A252895;
- with a 1 in column 0, but not in column 1: A030140;
- where every 1 is followed by another 1: A337533;
- with 1's in all even columns: A366243;
- with 1's in all odd columns: A366242;
- where every term has an even number of distinct prime factors: A268390;
- where every term is a power of a prime: A268375;
- where the terms are pairwise coprime: A138302;
- where the last nonunit term is coprime to the earlier terms: A369938;
- where the last nonunit term is a power of 2: A335738.
Number of nonunit terms in row n is A331591(n); their positions are given (in reversed binary) by A267116(n); the first nonunit is in column A352080(n)-1 and the infinite run of 1's starts in column A299090(n).

Programs

  • PARI
    up_to = 105;
    A352780sq(n, k) = if(k==0, core(n), A352780sq(core(n, 1)[2], k-1)^2);
    A352780list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, forstep(col=a-1,0,-1, i++; if(i > up_to, return(v)); v[i] = A352780sq(a-col,col))); (v); };
    v352780 = A352780list(up_to);
    A352780(n) = v352780[n];

Formula

A(n,0) = A007913(n); for k > 0, A(n,k) = A(A000188(n), k-1)^2.
A(n,k) = A225546(A060176(A225546(n), k+1)).
A331591(A(n,k)) <= 1.

A030140 The nonsquares squared.

Original entry on oeis.org

4, 9, 25, 36, 49, 64, 100, 121, 144, 169, 196, 225, 289, 324, 361, 400, 441, 484, 529, 576, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2500, 2601, 2704, 2809, 2916, 3025
Offset: 1

Views

Author

Keywords

Comments

The complement of the fourth powers A000583 within the squares A000290. - Peter Munn, Aug 20 2019

Examples

			a(1)=2^2, a(2)=3^2, a(3)=5^2, a(4)=6^2, a(5)=7^2, ..., a(n)=(integer which is not a perfect square)^2.
		

Crossrefs

Positions of 2's in A352080.
Related to A016945 via A225546.

Programs

  • Magma
    [(n + Floor(1/2 + Sqrt(n)))^2: n in [1..60]]; // Vincenzo Librandi, Apr 06 2020
    
  • Maple
    a:=proc(n) if type(sqrt(n),integer)=false then n^2 else fi end: seq(a(n),n=1..70); # Emeric Deutsch, Apr 11 2007
  • Mathematica
    a[n_] := (n + Floor[1/2 + Sqrt[n]])^2;
    Array[a, 50] (* Jean-François Alcover, Apr 05 2020 *)
  • Python
    from math import isqrt
    def A030140(n): return (n+(k:=isqrt(n))+int(n>=k*(k+1)+1))**2 # Chai Wah Wu, Jun 17 2024

Formula

a(n) = A000037(n)^2.
Sum_{n>=1} 1/a(n) = zeta(2) - zeta(4) = A013661 - A013662 = 0.5626108331... - Amiram Eldar, Nov 14 2020
{a(n) : n >= 1} = {A225546(6m+3) : m >= 0}. - Peter Munn, Nov 17 2022

Extensions

Edited by N. J. A. Sloane, Jul 02 2008 at the suggestion of R. J. Mathar

A046685 Numbers k such that the sum of cubes of divisors of k and the sum of 4th powers of divisors of k are relatively prime.

Original entry on oeis.org

1, 2, 4, 8, 9, 18, 25, 100, 121, 225, 289, 484, 529, 841, 1089, 1156, 1681, 2116, 2209, 2601, 2809, 3364, 3481, 4761, 5041, 6724, 6889, 7225, 7569, 7921, 8836, 10201, 11236, 11449, 12769, 13225, 13924, 15129, 17161, 18769, 19881, 20164, 21025
Offset: 1

Views

Author

Keywords

Comments

It can be shown that this is a subsequence of A028982.
From Robert Israel, Jul 09 2018: (Start)
The only terms that are not in A062503 are 2, 8 and 18.
No term is divisible by a term of A002476.
p^2 is a term for every p in A003627. (End)

Crossrefs

Programs

  • Maple
    N:= 10^6: # to get all terms <= N
    sort(select(filter, [seq(t^2,t=1..isqrt(N)),seq(2*t^2,t=1..isqrt(N/2))])); # Robert Israel, Jul 09 2018
  • Mathematica
    Select[Range[25000], CoprimeQ[DivisorSigma[3, #], DivisorSigma[4, #]] &] (* Michael De Vlieger, Aug 10 2023 *)
  • PARI
    isok(n) = gcd(sigma(n, 3), sigma(n, 4)) == 1; \\ Michel Marcus, Sep 24 2019

A322527 Number of integer partitions of n whose product of parts is a power of a squarefree number (A072774).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 13, 18, 21, 31, 34, 45, 51, 63, 72, 88, 97, 120, 128, 158, 174, 201, 222, 264, 287, 333, 359, 416, 441, 518, 557, 631, 684, 770, 833, 954, 1017, 1141, 1222, 1378, 1475, 1643, 1755, 1939, 2097, 2327, 2471, 2758, 2928, 3233, 3470, 3813, 4085
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2018

Keywords

Examples

			The a(1) = 1 through a(8) = 18 integer partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (52)       (44)
             (111)  (31)    (41)     (42)      (61)       (53)
                    (211)   (221)    (51)      (331)      (71)
                    (1111)  (311)    (222)     (421)      (422)
                            (2111)   (321)     (511)      (521)
                            (11111)  (411)     (2221)     (611)
                                     (2211)    (3211)     (2222)
                                     (3111)    (4111)     (3311)
                                     (21111)   (22111)    (4211)
                                     (111111)  (31111)    (5111)
                                               (211111)   (22211)
                                               (1111111)  (32111)
                                                          (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
Missing from the list for n = 7 through 9:
  (43)   (62)    (54)
  (322)  (332)   (63)
         (431)   (432)
         (3221)  (522)
                 (621)
                 (3222)
                 (3321)
                 (4311)
                 (32211)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SameQ@@Last/@FactorInteger[Times@@#]&]],{n,30}]
Previous Showing 21-30 of 62 results. Next