cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A230388 a(n) = binomial(11*n+1,n)/(11*n+1).

Original entry on oeis.org

1, 1, 11, 176, 3311, 68211, 1489488, 33870540, 793542167, 19022318084, 464333035881, 11502251937176, 288417894029200, 7306488667126803, 186719056586568660, 4807757550367267056, 124609430032127192295, 3248403420844673986345
Offset: 0

Views

Author

Tim Fulford, Jan 01 2014

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=11, r=1. Interesting property when r=1, a(n+1,p,1) = a(n,p,p) for n>=0.
This is also instance k = 10 of the generalized Catalan family {C(k, n)}A130564.%20-%20_Wolfdieter%20Lang">{n>=0} given in a comment of A130564. - _Wolfdieter Lang, Feb 05 2024

Crossrefs

Programs

  • Magma
    [Binomial(11*n+1,n)/(11*n+1): n in [0..30]]; // Vincenzo Librandi, Jan 01 2014
  • Maple
    seq(binomial(11*k+1,k)/(11*k+1),k=0..30); # Robert FERREOL, Apr 01 2015
    n:=30:G:=series(RootOf(g = 1+x*g^11, g),x=0,n+1):seq(coeff(G,x,k),k=0..n); # Robert FERREOL, Apr 01 2015
  • Mathematica
    Table[Binomial[11 n + 1, n]/(11 n + 1), {n, 0, 30}] (* Vincenzo Librandi, Jan 01 2014 *)
  • PARI
    a(n) = binomial(11*n+1,n)/(11*n+1);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11))+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, with p=11, r=1.
From Robert FERREOL, Apr 01 2015: (Start)
a(n) = binomial(11*n,n)/(10*n+1) = A062993(n+9, 9).
a(0) = 1; a(n) = Sum_{i1+i2+..i11=n-1} a(i1)*a(i2)*...*a(i11) for n>=1.
(End)
O.g.f.: hypergeometric([1,...,10]/11,[2,...,9,11]/10,(11^11/10^10)*x). For the e.g.f. put an extra 1 = 10/10 into the second part. - Wolfdieter Lang, Feb 05 2024
a(n) ~ (11^11/10^10)^n*sqrt(11/(2*Pi*(10*n)^3)). - Robert A. Russell, Jul 15 2024
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^21). - Seiichi Manyama, Jun 16 2025

A355262 Array of Fuss-Catalan numbers read by ascending antidiagonals, A(n, k) = binomial(k*n + 1, k)/(k*n + 1).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 5, 1, 0, 1, 1, 4, 12, 14, 1, 0, 1, 1, 5, 22, 55, 42, 1, 0, 1, 1, 6, 35, 140, 273, 132, 1, 0, 1, 1, 7, 51, 285, 969, 1428, 429, 1, 0, 1, 1, 8, 70, 506, 2530, 7084, 7752, 1430, 1, 0
Offset: 0

Views

Author

Peter Luschny, Jun 26 2022

Keywords

Comments

An alternative definition is: the Fuss-Catalan sequences (A(n, k), k >= 0 ) are the main diagonals of the Fuss-Catalan triangles of order n - 1. See A355173 for the definition of a Fuss-Catalan triangle.

Examples

			Array A(n, k) begins:
[0] 1, 1, 0,   0,    0,     0,      0,       0,         0, ...  A019590
[1] 1, 1, 1,   1,    1,     1,      1,       1,         1, ...  A000012
[2] 1, 1, 2,   5,   14,    42,    132,     429,      1430, ...  A000108
[3] 1, 1, 3,  12,   55,   273,   1428,    7752,     43263, ...  A001764
[4] 1, 1, 4,  22,  140,   969,   7084,   53820,    420732, ...  A002293
[5] 1, 1, 5,  35,  285,  2530,  23751,  231880,   2330445, ...  A002294
[6] 1, 1, 6,  51,  506,  5481,  62832,  749398,   9203634, ...  A002295
[7] 1, 1, 7,  70,  819, 10472, 141778, 1997688,  28989675, ...  A002296
[8] 1, 1, 8,  92, 1240, 18278, 285384, 4638348,  77652024, ...  A007556
[9] 1, 1, 9, 117, 1785, 29799, 527085, 9706503, 184138713, ...  A062994
		

References

  • N. I. Fuss, Solutio quaestionis, quot modis polygonum n laterum in polygona m laterum, per diagonales resolvi queat, Nova Acta Academiae Scientiarum Imperialis Petropolitanae, vol.9 (1791), 243-251.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 1990, (Eqs. 5.70, 7.66, and sec. 7.5, example 5).

Crossrefs

Variants: A062993, A070914.
Fuss-Catalan triangles: A123110 (order 0), A355173 (order 1), A355172 (order 2), A355174 (order 3).

Programs

  • Maple
    A := (n, k) -> binomial(k*n + 1, k)/(k*n + 1):
    for n from 0 to 9 do seq(A(n, k), k = 0..8) od;
  • Mathematica
    (* See the Knuth references. In the christmas lecture Knuth has fun calculating the Fuss-Catalan development of Pi and i. *)
    B[t_, n_] := Sum[Binomial[t k+1, k] z^k / (t k+1), {k, 0, n-1}] + O[z]^n
    Table[CoefficientList[B[n, 9], z], {n, 0, 9}] // TableForm

Formula

A(n, k) = (1/k!) * Product_{j=1..k-1} (k*n + 1 - j).
A(n, k) = (binomial(k*n, k) + binomial(k*n, k-1)) / (k*n + 1).
Let B(t, z) = Sum_{k>=0} binomial(k*t + 1, k)*z^k / (k*t + 1), then
A(n, k) = [z^k] B(n, z).

A091144 a(n) = binomial(n^2, n)/(1+(n-1)*n).

Original entry on oeis.org

1, 1, 2, 12, 140, 2530, 62832, 1997688, 77652024, 3573805950, 190223180840, 11502251937176, 779092434772236, 58448142042957576, 4811642166029230560, 431306008583779517040, 41820546066482630185200
Offset: 0

Views

Author

Paul Barry, Dec 22 2003

Keywords

Comments

Diagonal of array T(n,k) = binomial(kn,n)/(1+(k-1)n).
Number of paths up and left from (0,0) to (n^2-n,n) where x/y <= n-1 for all intermediate points. - Henry Bottomley, Dec 25 2003
Empirical: In the ring of symmetric functions over the fraction field Q(q, t), letting s(1^n) denote the Schur function indexed by (1^n), a(n) is equal to the coefficient of s(n) in nabla^(n)s(1^n) with q=t=1, where nabla denotes the "nabla operator" on symmetric functions, and s(n) denotes the Schur function indexed by the integer partition (n) of n. - John M. Campbell, Apr 06 2018

Crossrefs

Programs

  • GAP
    List([0..20],n->Binomial(n^2,n)/(1+(n-1)*n)); # Muniru A Asiru, Apr 08 2018
  • Magma
    [Binomial(n^2, n)/(1+(n-1)*n): n in [0..20]]; // Vincenzo Librandi, Apr 07 2018
    
  • Maple
    A091144 := proc(n)
        binomial(n^2,n)/(1+n*(n-1)) ;
    end proc: # R. J. Mathar, Feb 14 2015
  • Mathematica
    Table[Binomial[n^2, n] / (n (n - 1) + 1), {n, 0, 20}] (* Vincenzo Librandi, Apr 07 2018 *)
  • PARI
    a(n) = binomial(n^2, n)/(n*(n-1)+1); \\ Altug Alkan, Apr 06 2018
    

Formula

From Henry Bottomley, Dec 25 2003: (Start)
a(n) = A014062(n)/A002061(n);
a(n) = A062993(n-2, n);
a(n) = A070914(n, n-1);
a(n) = A071201(n, n^2-n);
a(n) = A071201(n, n^2-n+1);
a(n) = A071202(n, n^2-n+1). (End)

A062747 Row sums of (unsigned) staircase array A062746.

Original entry on oeis.org

1, 7, 89, 1447, 26713, 532391, 11165785, 242851751, 5427716185, 123901026215, 2876525797465, 67710590623655, 1612262780199001, 38764533106581415, 939825790848884825, 22950405085586497447
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Formula

a(n)=N(3; k, x=-1), with the polynomials N(3; k, x) from the staircase array A062746.
a(n) = 2*( Sum_{j = 0..n} (-1)^j*C(3; n-j)*4^(n-j) ) - (-1)^n with C(3; n) := A001764(n) = A062993(n+1, 1) (a Pfaff-Fuss or 3-Raney sequence).
G.f.: (2*c(3; 4*x)-1)/(1+x) with c(3; x)= RootOf(x*A001764%20%5Bformula%20for%20a(n)%20and%20g.f.%20corrected%20by%20_Peter%20Bala">Z^3-_Z +1), the g.f. of A001764 [formula for a(n) and g.f. corrected by _Peter Bala, Mar 26 2020].
Conjectural recurrence: n*(2*n+1)*a(n) = (4*n-3)*(13*n-4)*a(n-1) + 6*(3*n-1)*(3*n-2)*a(n-2) with a(0) = 1, a(1) = 7. - Peter Bala, Mar 25 2020

A062752 Row sums of unsigned N(4) staircase array A062751.

Original entry on oeis.org

1, 15, 497, 22031, 1124849, 62379535, 3651676657, 222085764623, 13895337519601, 888654458770959, 57831897893972465, 3817410543738148367, 254970980461934291441, 17200148833928765494799
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Formula

a(n)=N(4; n, -1) with the row polynomials N(4; n, x) defined in A062751.
a(n)=sum(((-1)^(n-j))*2^(3*j+1)*A002293(j), j=1..n)+(-1)^n, with A002293(j)= A062993(j+2, 2)= binomial(4*j, j)/(3*j+1).

A062987 Row sums of unsigned N(5) staircase array A062986.

Original entry on oeis.org

1, 31, 2529, 284191, 37071329, 5268723231, 791682591201, 123697944483359, 19894672175770081, 3271817054307112479, 547678880100062177761, 93006445178165754746399, 15983911852747899752786401
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Crossrefs

Formula

a(n) = N(5; n, -1) with polynomials N(5; n, x) defined in A062986.
a(n) = Sum(((-1)^(n-j))*2^(4*j+1)*A002294(j), j=1..n)+(-1)^n, with A002294(j) = A062993(j+3, 3) = binomial(5*j, j)/(4*j+1).

A137211 Generalized or s-Catalan numbers.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 5, 12, 22, 1, 14, 55, 140, 285, 1, 42, 273, 969, 2530, 5481, 1, 132, 1428, 7084, 23751, 62832, 141778, 1, 429, 7752, 53820, 231880, 749398, 1997688, 4638348, 1, 1430, 43263, 420732, 2330445, 9203634, 28989675, 77652024
Offset: 1

Views

Author

Roger L. Bagula, Mar 05 2008

Keywords

Comments

From R. J. Mathar, May 04 2008: (Start)
This is a triangular section of Stanica's array of s-Catalan numbers, with rows A000108, A001764, A002293-A002296, A007556, A062994, A059968,... read along diagonals in A062993 and A070914:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, ...
1, 1, 3, 12, 55, 273, 1428, 7752, 43263, 246675, 1430715, ...
1, 1, 4, 22, 140, 969, 7084, 53820, 420732, 3362260, 27343888, ...
1, 1, 5, 35, 285, 2530, 23751, 231880, 2330445, 23950355, 250543370, ...
1, 1, 6, 51, 506, 5481, 62832, 749398, 9203634, 115607310, 1478314266, ...
1, 1, 7, 70, 819, 10472, 141778, 1997688, 28989675, 430321633, 6503352856, ...
1, 1, 8, 92, 1240, 18278, 285384, 4638348, 77652024, 1329890705, 23190029720, ...
1, 1, 9, 117, 1785, 29799, 527085, 9706503, 184138713, 3573805950, 70625252863, ...
1, 1, 10, 145, 2470, 46060, 910252, 18730855, 397089550, 8612835715, 190223180840, ...
(End)
The Fuss-Catalan numbers are Cat(d,k)= [1/(k*(d-1)+1)]*binomial(k*d,k) and enumerate the number of (d+1)-gon partitions of a (k*(d-1)+2)-gon (cf. Whieldon and Schuetz link for this interpretation and others), so the (k+1)-th column of Stanica's array enumerates the number of (n+1)-gon partitions of a (k*(n-1)+2)-gon. Cf. A000326 (k=3), A100157 (k=4) and A234043 (k=5). - Tom Copeland, Oct 05 2014

Examples

			{1},
{1, 1},
{1, 2, 3},
{1, 5, 12, 22},
{1, 14, 55, 140, 285},
{1, 42, 273, 969, 2530, 5481},
{1, 132, 1428, 7084, 23751, 62832, 141778},
{1, 429, 7752, 53820, 231880, 749398, 1997688, 4638348}
		

Programs

  • Mathematica
    t[n_, m_] := Binomial[m*n, n]/((m - 1)*n + 1); a = Table[Table[t[n, m], {m, 1, n + 1}], {n, 0, 10}]; Flatten[a]

Formula

T(n,m) = binomial(m*n,n)/((m-1)*n+1).

Extensions

Edited by N. J. A. Sloane, May 16 2008
Previous Showing 11-17 of 17 results.