cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A241732 Primes p such that p^3 + 2 and p^3 - 2 are semiprime.

Original entry on oeis.org

2, 11, 13, 17, 41, 89, 101, 239, 271, 331, 571, 641, 719, 1051, 1231, 1321, 1549, 1559, 1721, 1741, 1831, 1993, 1999, 2029, 2311, 2459, 2749, 2837, 2861, 2939, 3389, 3467, 3671, 4049, 4111, 4273, 4787, 4919, 4969, 5657, 5689, 5861, 6221, 6679, 6691, 6829, 7109
Offset: 1

Views

Author

K. D. Bajpai, Apr 27 2014

Keywords

Examples

			11 is prime and appears in the sequence because 11^3 + 2 = 1333 = 31 * 43 and 11^3 - 2 = 1329 = 3 * 443, both are semiprime.
41 is prime and appears in the sequence because 41^3 + 2 = 68923 = 157 * 439 and 41^3 - 2 = 68919 = 3 * 22973, both are semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): KD:= proc() local k; k:=ithprime(n); if bigomega(k^3+2)=2 and bigomega(k^3-2)=2 then k; fi; end: seq(KD(), n=1..2000);
  • Mathematica
    A241732 = {}; Do[t = Prime[n]; If[PrimeOmega[t^3 + 2] == 2 && PrimeOmega[t^3 - 2] == 2, AppendTo[A241732, t]], {n, 500}]; A241732
    Select[Prime[Range[1000]],PrimeOmega[#^3+2]==PrimeOmega[#^3-2]==2&] (* Harvey P. Dale, Jun 20 2019 *)

A242343 Triangular numbers T such that (T+2) is semiprime.

Original entry on oeis.org

36, 55, 91, 120, 153, 276, 300, 325, 435, 595, 903, 1035, 1225, 1653, 1711, 1891, 2016, 2145, 2485, 2556, 3003, 3240, 3741, 4095, 4465, 4560, 4851, 5253, 5460, 5565, 5995, 6105, 6216, 6441, 6555, 6903, 7021, 7140, 7260, 8001, 8256, 8911, 9045, 9180, 9591, 10585
Offset: 1

Views

Author

K. D. Bajpai, May 11 2014

Keywords

Comments

The n-th triangular number T(n) = n*(n+1)/2 = A000217(n).
Triangular numbers of the form p*q - 2, where p and q are primes.
The indices of these triangular numbers are 8, 10, 13, 15, 17, 23, 24, 25, 29, 34, 42, 45, 49, 57, 58, 61, 63, 65, 70, 71, 77, 80, 86, 90, 94, 95, 98, 102, 104, 105, 109, 110, 111, 113, 114, 117, 118, 119, 120, 126, 128, 133, 134, 135, 138, 145, ... - Wolfdieter Lang, May 13 2014

Examples

			a(1) = 36 = 8*(8+1)/2 = 36 + 2 = 38 = 2 * 19 is semiprime.
a(2) = 55 = 10*(10+1)/2 = 55 + 2 = 57 = 3 * 19 is semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A242343:= proc()local t; t:=x/2*(x+1); if bigomega(t+2)=2 then  RETURN (t); fi;end: seq(A242343 (),x=1..200);
  • Mathematica
    Select[Table[n/2*(n + 1), {n, 200}], PrimeOmega[# + 2] == 2 &]
    Select[Accumulate[Range[200]],PrimeOmega[#+2]==2&] (* Harvey P. Dale, Dec 25 2024 *)

A289250 Primes p such that p + 4 is a semiprime.

Original entry on oeis.org

2, 5, 11, 17, 29, 31, 47, 53, 61, 73, 83, 89, 107, 137, 139, 151, 157, 173, 179, 181, 197, 199, 211, 233, 263, 283, 317, 331, 337, 367, 373, 389, 409, 433, 443, 449, 467, 523, 541, 547, 569, 577, 587, 593, 607, 619, 631, 677, 683, 691, 709, 719, 727, 733, 751, 787, 809, 811, 827
Offset: 1

Views

Author

Zak Seidov, Jun 29 2017

Keywords

Comments

Except for case p=5, p+4 is never a perfect square.
For p = {2, 11, 31, 73, 139, 433, 1759, 2017} p+4 is a product of two consecutive primes.

Examples

			2+4=6=2*3, 5+4=9=3*3, 11+4=15=3*5 (all semiprimes).
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range@ 150, PrimeOmega[# + 4] == 2 &] (* Michael De Vlieger, Jun 29 2017 *)
  • PARI
    issemi(n)=bigomega(n)==2
    is(n)=isprime(n) && issemi(n+4) \\ Charles R Greathouse IV, Jul 02 2017

A104485 Primes p = p(k) such that prime(k) + 2 and prime(k+1) + 2 are both semiprimes.

Original entry on oeis.org

19, 31, 47, 83, 109, 113, 127, 199, 251, 257, 293, 353, 401, 443, 467, 479, 487, 491, 499, 503, 557, 571, 577, 647, 677, 743, 761, 787, 829, 863, 911, 937, 941, 947, 971, 977, 983, 1109, 1187, 1193, 1291, 1327, 1361, 1381, 1399, 1459, 1499, 1553, 1559
Offset: 1

Views

Author

Giovanni Teofilatto, Apr 19 2005

Keywords

Examples

			19 is a term because prime(8) + 2 = 19 + 2 = 21 = 3*7 and prime(9) + 2 = 25 = 5*5.
		

Crossrefs

Cf. A063637.

Programs

  • Mathematica
    fQ[n_] := Plus @@ Flatten[ Table[ #[[2]], {1}] & /@ FactorInteger[n]] == 2; Prime /@ Select[ Range[ 270], fQ[ Prime[ # ] + 2] && fQ[ Prime[ # + 1] + 2] &] (* Robert G. Wilson v, Apr 19 2005 *)
    Select[Prime[Range[250]],PrimeOmega[#+2]==PrimeOmega[NextPrime[#]+2]==2&] (* Harvey P. Dale, Apr 01 2024 *)

Extensions

Corrected and extended by Robert G. Wilson v, Apr 19 2005

A106667 a(n) = 1 if prime(n) + 2 is a prime, a(n) = -1 if prime(n) + 2 is a semiprime, otherwise 0.

Original entry on oeis.org

-1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 0, -1, -1, 1, 0, -1, 1, 0, 0, -1, -1, 0, 1, 0, 1, -1, -1, -1, -1, 1, -1, 1, 0, -1, 0, -1, 0, 1, -1, 1, 0, 1, -1, -1, 0, 1, 0, -1, 1, 0, -1, -1, -1, 1, 0, 0, 1, 0, -1, -1, 1, 0, -1, 0, -1, 1, 0, -1, -1, 0, 0, -1, 0, -1, 0, -1, -1, 1, 0, 1, 0, 0, -1, -1, 0, 1, 0, -1, -1, -1, -1
Offset: 1

Views

Author

Giovanni Teofilatto, May 13 2005

Keywords

Examples

			a(1) = -1 because prime(1) = 2 and 2 + 2 = 4 is a semiprime;
a(2) = 1 because prime(2) = 3 and 3 + 2 = 5 is a prime;
a(14) = 0 because prime(14) = 43 and 43 + 2 = 45 is neither prime nor semiprime.
		

Crossrefs

Programs

  • Maple
    p:= 1:
    for n from 1 to 100 do
      p:= nextprime(p);
      if isprime(p+2) then A[n]:=1
      elif numtheory:-bigomega(p+2)=2 then A[n]:=-1
      else A[n]:= 0
      fi
    od:
    seq(A[n],n=1..100); # Robert Israel, Aug 29 2018

Extensions

Corrected, and definition clarified, by Robert Israel, Aug 29 2018

A242344 Triangular numbers T such that T-2 is semiprime.

Original entry on oeis.org

6, 28, 36, 120, 136, 171, 276, 300, 325, 528, 561, 780, 820, 903, 1081, 1128, 1176, 1275, 1540, 1596, 1653, 2080, 2211, 2415, 2485, 2556, 2775, 3160, 3240, 3403, 3655, 3828, 4371, 4851, 5151, 5253, 5356, 5460, 5995, 6105, 6328, 6441, 6903, 7381, 7503, 8001, 8256
Offset: 1

Views

Author

K. D. Bajpai, May 11 2014

Keywords

Comments

The n-th triangular number T(n) = n*(n+1)/2.
Triangular numbers of the form p*q + 2, where p and q are primes (not necessarily distinct).

Examples

			a(2) = 28 = 7*(7+1)/2 = 28 - 2 = 26 = 2 * 13 is semiprime.
a(3) = 36 = 8*(8+1)/2 = 36 - 2 = 34 = 2 * 17 is semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A242344:= proc()local t; t:=x*(x+1)/2;if bigomega(t-2)=2 then  RETURN (t); fi;end: seq(A242344(),x=1..200);
  • Mathematica
    Select[Table[n*(n + 1)/2, {n, 200}], PrimeOmega[# - 2] == 2 &]
    Select[Accumulate[Range[200]],PrimeOmega[#-2]==2&] (* Harvey P. Dale, Feb 21 2023 *)

A242356 Triangular numbers T such that both (T+2) and (T-2) are semiprimes.

Original entry on oeis.org

36, 120, 276, 300, 325, 903, 1653, 2485, 2556, 3240, 4851, 5253, 5460, 5995, 6105, 6441, 6903, 8001, 8256, 8911, 9591, 10585, 12561, 12720, 14365, 20301, 21115, 22791, 23436, 24753, 26335, 26565, 26796, 27495, 29161, 30381, 31375, 34191, 34980, 37401, 40755
Offset: 1

Views

Author

K. D. Bajpai, May 11 2014

Keywords

Comments

The n-th triangular number T(n) = n*(n+1)/2.
Triangular numbers of the form p*q - 2 and r*s + 2 where p, q, r and s are primes.

Examples

			a(1) = 36 = 8*(8+1)/2 = 36 + 2 = 38 = 2 * 19 and  36 - 2 = 34 = 2 * 17 both are semiprimes.
a(2) = 120 = 15*(15+1)/2 = 120 + 2 = 122 = 2 * 61 and 120 - 2 = 118 = 2 * 59 both are semiprimes.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A242356:= proc()local t; t:=x*(x+1)/2; if bigomega(t+2)=2 and bigomega(t-2)=2 then  RETURN (t); fi;end: seq(A242356 (),x=1..500);
  • Mathematica
    Select[Table[n*(n + 1)/2, {n, 500}], PrimeOmega[# + 2] == 2 && PrimeOmega[# - 2] == 2 &]
    Select[Accumulate[Range[300]],PrimeOmega[#+{2,-2}]=={2,2}&] (* Harvey P. Dale, Apr 21 2016 *)

A277993 Sophie Germain primes p such that p + 2 and p - 2 are semiprimes.

Original entry on oeis.org

23, 53, 89, 113, 131, 251, 293, 491, 683, 719, 953, 1439, 1499, 1511, 1733, 2393, 3491, 3779, 5171, 7043, 7151, 7433, 7649, 7901, 8069, 8663, 9689, 10781, 12011, 12653, 13049, 13229, 13451, 13553, 14669, 15569, 16001, 16253, 18899, 19709, 20411, 22469, 22751, 23099
Offset: 1

Views

Author

K. D. Bajpai, Nov 07 2016

Keywords

Comments

Intersection of A005384 and A063643.

Examples

			a(1) = 23 is Sophie Germain prime because 2*23 + 1 = 47 is prime. Also, 23 + 2 = 25 =  5*5; 23 - 2 = 21 = 7*3; are both semiprime.
a(2) = 53 is Sophie Germain prime because 2*53 + 1 = 107 is prime. Also, 53 + 2 = 55 =  11*5; 23 - 2 = 51 = 17*3; are both semiprime.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Prime[Range[10000]], PrimeQ[2 # + 1] &], PrimeOmega[# - 2] == 2 && PrimeOmega[# + 2] == 2 &]
    Select[Prime[Range[3000]],PrimeQ[2#+1]&&PrimeOmega[#+{2,-2}]=={2,2}&] (* Harvey P. Dale, Dec 16 2017 *)
  • PARI
    is(n) = ispseudoprime(n) && ispseudoprime(2*n+1) && bigomega(n+2)==2 && bigomega(n-2)==2 \\ Felix Fröhlich, Nov 07 2016

A111067 Number of odd primes p < 10^n such that p+2 = product of 2 primes (no twin Chen primes).

Original entry on oeis.org

1, 11, 79, 427, 3009, 21779, 166649, 1322266, 10752066, 89305602, 754868608, 6472917998
Offset: 1

Views

Author

Pierre CAMI, Oct 08 2005

Keywords

Comments

A006880(n) = number of primes < 10^n, A007508(n) = number of twin primes < 10^n. Let F(n) = A006880(n)/A007508(n). For n > 3, we find that F(n) is ~ 0.762373*log(10^n) - 0.968855.
Let FF(n) = A006880(n)/a(n). For n>3, we find that FF(n) is ~ 0.163128*log(10^n) + 1.349255. a(n)/A007508(n) is then ~ 0.762373*log((10^n) - 0.968855 / ( 0.163128*log(10^n) + 1.349255, as n tends to infinity a(n) / A007508(n) needs to tend to 0.762373 / 0.163128 = 4.673465.

Examples

			7 is the only prime < 10 with 7+2 = 3*3 = product of 2 odd primes so a(1) = 1.
		

Crossrefs

Programs

Extensions

a(8) corrected and a(9) computed by Robert G. Wilson v, Oct 10 2005
a(10)-a(12) from Amiram Eldar, Jul 25 2025
Previous Showing 11-19 of 19 results.