cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A340947 Number of ways to write n as an ordered sum of 10 squares of positive integers.

Original entry on oeis.org

1, 0, 0, 10, 0, 0, 45, 0, 10, 120, 0, 90, 210, 0, 360, 262, 45, 840, 300, 360, 1260, 480, 1260, 1350, 1015, 2520, 1560, 2200, 3150, 2880, 4186, 2880, 5430, 6240, 3780, 8300, 7080, 7920, 11160, 7320, 13257, 14640, 10600, 16470, 18570, 18240, 19620, 22230, 25135, 27720, 28020, 28480, 38160
Offset: 10

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(n, 10):
    seq(a(n), n=10..62);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 62; CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^10/1024, {x, 0, nmax}], x] // Drop[#, 10] &

Formula

G.f.: (theta_3(x) - 1)^10 / 1024, where theta_3() is the Jacobi theta function.

A341364 Expansion of (1 / theta_4(x) - 1)^3 / 8.

Original entry on oeis.org

1, 6, 24, 77, 216, 552, 1315, 2964, 6387, 13255, 26640, 52074, 99336, 185430, 339483, 610709, 1081227, 1886484, 3247502, 5521365, 9279624, 15429149, 25397088, 41412030, 66928700, 107265576, 170556654, 269164346, 421765920, 656419080, 1015044526, 1559950185, 2383284894
Offset: 3

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
          g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 3):
    seq(a(n), n=3..35);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 35; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^3/8, {x, 0, nmax}], x] // Drop[#, 3] &
    nmax = 35; CoefficientList[Series[(1/8) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^3, {x, 0, nmax}], x] // Drop[#, 3] &

Formula

G.f.: (1/8) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^3.
a(n) ~ A319552(n)/8 ~ 3*exp(Pi*sqrt(3*n)) / (512*n^(3/2)). - Vaclav Kotesovec, Feb 20 2021

A211639 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^2+x^2+y^2<=n.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 4, 4, 4, 7, 7, 10, 11, 11, 17, 17, 17, 20, 23, 26, 26, 32, 35, 35, 38, 38, 44, 48, 48, 54, 60, 60, 60, 66, 69, 75, 78, 78, 87, 87, 87, 96, 102, 105, 108, 114, 120, 120, 121, 127, 133, 139, 139, 145, 157, 157, 163, 169, 169, 178, 178, 184, 196
Offset: 0

Views

Author

Clark Kimberling, Apr 18 2012

Keywords

Comments

For a guide to related sequences, see A211422.

Crossrefs

Cf. A211638, A211422. Partial sums of A063691.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
        (Do[If[w^2 + x^2 + y^2 <= n, s = s + 1],
            {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 80]]     (* A211639 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

Formula

a(n) = A211638(n)+A063691(n). - R. J. Mathar, Jan 07 2015
G.f.: (theta_3(x) - 1)^3/(8*(1 - x)), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 17 2018

A237707 Number of unit cubes, aligned with a three-dimensional Cartesian mesh, completely within the first octant of a sphere centered at the origin, ordered by increasing radius.

Original entry on oeis.org

1, 4, 7, 10, 11, 17, 20, 23, 26, 32, 35, 38, 44, 48, 54, 60, 66, 69, 75, 78, 87, 96, 102, 105, 108, 114, 120, 121, 127, 133, 139, 145, 157, 163, 169, 178, 184, 196, 202, 214, 217, 220, 232, 238, 241, 244, 256, 263, 266, 278, 284, 296, 299, 308, 314, 329, 332
Offset: 1

Views

Author

Rajan Murthy, Feb 11 2014

Keywords

Examples

			When the radius of the sphere reaches 3^(1/2), one cube is completely within the sphere. When the radius reaches 6^(1/2), four cubes are completely within the sphere.
		

Crossrefs

The radii corresponding to the terms are given by the square roots of A000408 starting with squared radius 3.
Cf. A232499 (2-dimensional analog).
Partial sums of A014465 and A063691 (but then with repeated terms omitted).

Programs

  • Mathematica
    (* Illustrates the sequence *)
    Cube[x_,y_,z_]:=Cuboid[{x-1,y-1,z-1},{x,y,z}]
    Cubes[r_]:=Cube@@#&/@Select[Flatten[Table[{x,y,z},{x,1,r},{y,1,r},{z,1,r}],2],Norm[#]<=r&]
    Draw[r_]:=Graphics3D[Union[Cubes[r],{{Green, Opacity[0.3], Sphere[{0,0,0},r]}}],PlotRange->{{0,r},{0,r},{0,r}},ViewPoint->{r,3r/4,3r/5}];
    Draw/@Sqrt/@{3,6,9,11,12,14} (* Charles R Greathouse IV, Mar 12 2014 *)
  • Scilab
    // See Murthy link.

Formula

a(n) ~ (Pi*sqrt(30)/25)*n^(3/2). - Charles R Greathouse IV, Mar 14 2014

Extensions

Duplicate terms deleted by Rajan Murthy, Mar 06 2014
Terms a(36) and beyond added from b-file by Andrew Howroyd, Feb 27 2018

A321429 Expansion of Product_{i>0, j>0, k>0} (1 + x^(i^2 + j^2 + k^2)).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 3, 0, 0, 6, 0, 3, 7, 0, 9, 13, 0, 18, 19, 3, 39, 28, 9, 66, 42, 33, 105, 68, 78, 168, 111, 153, 261, 185, 285, 411, 325, 483, 636, 563, 798, 1017, 949, 1275, 1620, 1556, 2061, 2547, 2500, 3303, 4008, 3969, 5226, 6216, 6252, 8301, 9534, 9784, 12984
Offset: 0

Views

Author

Seiichi Manyama, Nov 09 2018

Keywords

Crossrefs

Formula

G.f.: Product_{k>0} (1 + x^k)^A063691(k).

A181787 Number of solutions to n^2 = a^2 + b^2 + c^2 with positive a, b, c.

Original entry on oeis.org

0, 0, 0, 3, 0, 0, 3, 6, 0, 12, 0, 9, 3, 6, 6, 15, 0, 9, 12, 15, 0, 33, 9, 18, 3, 12, 6, 39, 6, 18, 15, 24, 0, 48, 9, 30, 12, 24, 15, 45, 0, 27, 33, 33, 9, 60, 18, 36, 3, 48, 12, 60, 6, 36, 39, 45, 6, 78, 18, 45, 15, 42, 24, 114, 0, 36, 48, 51, 9, 93, 30, 54, 12, 51, 24, 87, 15, 87, 45, 60, 0, 120, 27, 63, 33, 51, 33, 105, 9, 63, 60, 84, 18, 123, 36, 75, 3, 69, 48, 165, 12
Offset: 0

Views

Author

T. D. Noe, Nov 12 2010

Keywords

Comments

Note that a(n)=0 for n=0 and the n in A094958.

Examples

			a(3)=3 because 3^2 = 1^2+2^2+2^2 = 2^2+1^2+2^2 = 2^2+2^2+1^2. - _Robert Israel_, Aug 02 2019
		

Crossrefs

Programs

  • Maple
    N:= 200: # for a(0)..a(N)
    A:= Array(0..N):
    mults:= [1,3,6]:
    for a from 1 while 3*a^2 <= N^2 do
      if a::odd then b0:= a+1; db:= 2 else b0:= a; db:= 1 fi;
      for b from b0 by db while a^2 + 2*b^2 <= N^2 do
        if (a+b)::odd then c0:= b + (b mod 2); dc:= 2 else c0:= b; dc:= 1 fi;
        for c from c0 by dc do
          v:= a^2 + b^2 + c^2;
          if v > N^2 then break fi;
          if issqr(v) then
            w:= sqrt(v);
            A[w]:= A[w]+ mults[nops({a,b,c})];
          fi
    od od od:
    convert(A,list); # Robert Israel, Aug 02 2019
  • Mathematica
    nn=100; t=Table[0,{nn}]; Do[n=Sqrt[a^2+b^2+c^2]; If[n<=nn && IntegerQ[n], t[[n]]++], {a,nn}, {b,nn}, {c,nn}]; Prepend[t,0]

Formula

a(n) = A063691(n^2). - Michel Marcus, Apr 25 2015
a(2*n) = a(n). - Robert Israel, Aug 02 2019

A321432 Expansion of Product_{i>0, j>0, k>0} (1 - x^(i^2 + j^2 + k^2)).

Original entry on oeis.org

1, 0, 0, -1, 0, 0, -3, 0, 0, 0, 0, -3, 5, 0, -3, 7, 0, 12, -7, -3, 21, -14, 3, -6, 6, 27, -57, 22, 6, -36, 15, -75, 87, -17, -111, 99, -71, 75, -90, -91, 324, -225, 23, 57, -36, 332, -543, 333, 374, -417, 342, -473, 720, 18, -1132, 1227, -330, 202, -414, -846, 2357, -1998
Offset: 0

Views

Author

Seiichi Manyama, Nov 09 2018

Keywords

Crossrefs

Formula

G.f.: Product_{k>0} (1 - x^k)^A063691(k).

A321433 Expansion of Product_{i>0, j>0, k>0} 1/(1 - x^(i^2 + j^2 + k^2)).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 4, 0, 0, 7, 0, 3, 14, 0, 9, 23, 0, 21, 45, 3, 48, 72, 12, 96, 124, 39, 180, 204, 105, 327, 343, 225, 585, 572, 468, 1011, 976, 903, 1719, 1662, 1689, 2895, 2844, 3018, 4836, 4791, 5355, 8013, 8061, 9234, 13182, 13429, 15714, 21573, 22257, 26346
Offset: 0

Views

Author

Seiichi Manyama, Nov 09 2018

Keywords

Crossrefs

Convolution inverse of A321432.

Formula

G.f.: Product_{k>0} 1/(1 - x^k)^A063691(k).

A211638 Number of ordered triples (w, x, y) with all terms in {1, ..., n} and w^2 + x^2 + y^2 < n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 4, 4, 4, 7, 7, 10, 11, 11, 17, 17, 17, 20, 23, 26, 26, 32, 35, 35, 38, 38, 44, 48, 48, 54, 60, 60, 60, 66, 69, 75, 78, 78, 87, 87, 87, 96, 102, 105, 108, 114, 120, 120, 121, 127, 133, 139, 139, 145, 157, 157, 163, 169, 169, 178, 178, 184
Offset: 0

Views

Author

Clark Kimberling, Apr 18 2012

Keywords

Comments

For a guide to related sequences, see A211422.

Crossrefs

Cf. A211422.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
        (Do[If[w^2 + x^2 + y^2 < n, s = s + 1],
            {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 80]]     (* A211638 *)
    (* Peter J. C. Moses, Apr 13 2012 *)
  • PARI
    first(n) = {n = max(n, 2); n-=2; my(res = vector(n), v = vector(n)); forvec(x = vector(3, i, [1,sqrtint(n)]), c = sum(i = 1, 3, x[i]^2); if(c <= n, v[c]++)); for(i = 2, #v, v[i]+=v[i-1]); concat([0,0],v)} \\ David A. Corneth, Jun 16 2023

Formula

a(n) + A063691(n) = A211639(n). - R. J. Mathar, Jun 16 2023
a(n) = A211639(n-1). - R. J. Mathar, Jun 16 2023

A347710 Number of compositions (ordered partitions) of n into at most 3 squares.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 0, 1, 4, 2, 3, 1, 2, 6, 0, 1, 5, 4, 3, 2, 6, 3, 0, 3, 3, 8, 4, 0, 8, 6, 0, 1, 6, 5, 6, 4, 2, 9, 0, 2, 11, 6, 3, 3, 8, 6, 0, 1, 7, 9, 6, 2, 8, 12, 0, 6, 6, 2, 9, 0, 8, 12, 0, 1, 10, 12, 3, 5, 12, 6, 0, 4, 5, 14, 7, 3, 12, 6, 0, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 10 2021

Keywords

Crossrefs

Formula

a(n) = Sum_{k=0..3} A337165(n,k). - Alois P. Heinz, Sep 10 2021
Previous Showing 11-20 of 22 results. Next